ohmic drop
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Qi Wang ◽  
Tingting Hao ◽  
Kaiyue Hu ◽  
Lingxia Qin ◽  
Xinxin Ren ◽  
...  

Abstract Signal generation of traditional electrochemical biosensors suffers from the random diffusion of electroactive probes in a electrolyte solution, which is accompanied by poor reaction kinetics and low signal stability from complex biological systems. Herein, a novel circuit system with autonomous compensation solution ohmic drop (noted as “fast-scan cyclic voltammetry (FSCV)”) is developed to solve the above problems, and employed to achieve terminal deoxynucleotide transferase (TdT) and its small molecule inhibitor analysis. At first, a typical TdT-mediated catalytic polymerization in the conditions of original DNA, deoxythymine triphosphate (dTTP) and Hg2+ is applied for the electrode assembly. The novel electrochemical method can provide some unattenuated signals due to in-situ Hg redox reaction, thus improving reaction kinetics and signal stability. This approach is mainly dependent on TdT-mediated reaction, so it can be applied properly for TdT investigation, and a detection limit of 0.067 U/mL (S/N=3) is achieved successfully. More interesting, we also mimic the function of TdT-related signal communication in various logic gates such as YES, NOT, AND, N-IMPLY, and AND-AND-N-IMPLY cascade circuit. This study provides a new method for the detection of TdT biomarkers in many types of diseases and the construction of a signal attenuation-free logic gate.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1824
Author(s):  
Zulin Wang ◽  
Arif Tirto Aji ◽  
Benjamin Paul Wilson ◽  
Steinar Jørstad ◽  
Maria Møll ◽  
...  

Zinc electrowinning is an energy-intensive step of hydrometallurgical zinc production in which ohmic drop contributes the second highest overpotential in the process. As the ohmic drop is a result of electrolyte conductivity, three conductivity models (Aalto-I, Aalto-II and Aalto-III) were formulated in this study based on the synthetic industrial electrolyte conditions of Zn (50–70 g/dm3), H2SO4 (150–200 g/dm3), Mn (0–8 g/dm3), Mg (0–4 g/dm3), and temperature, T (30–40 °C). These studies indicate that electrolyte conductivity increases with temperature and H2SO4 concentration, whereas metal ions have negative effects on conductivity. In addition, the interaction effects of temperature and the concentrations of metal ions on solution conductivity were tested by comparing the performance of the linear model (Aalto-I) and interrelated models (Aalto-II and Aalto-III) to determine their significance in the electrowinning process. Statistical analysis shows that Aalto-I has the highest accuracy of all the models developed and investigated in this study. From the industrial validation, Aalto-I also demonstrates a high level of correlation in comparison to the other models presented in this study. Further comparison of model Aalto-I with the existing published models from previous studies shows that model Aalto-I substantially improves the accuracy of the zinc conductivity empirical model.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2868
Author(s):  
Nora A. Tafoya-Medina ◽  
Cristina Chuck-Hernandez ◽  
Dora I. Medina

Zinc has wide industrial applications; consequently, its extraction procedures have been extensively studied. Hydrometallurgy is one of the most common methods employed for zinc recovery. However, the electrooxidation of sphalerite and the effect of the pyrite content in the concentrate have not been investigated; thus, in this work, zinc recovery from low-iron sphalerite mineral with a relatively high pyrite content (EBHSS), in a sulfate medium was further explored. The reaction mechanism of the anodic dissolution of the EBHSS mineral was established by microelectrolysis using mineral carbon paste electrodes; these results were used to determine adequate conditions for the macroelectrolysis of the sample. The macroelectrolysis indicated that EBHSS has a low electrodissolution rate; additionally, different analyses of the species produced in the macroelectrolysis showed that the ohmic drop registered in the collector had no influence in the passivation of the EBHSS surface. It was also determined that the dissolution of EBHSS was driven by the charge transfer of the sphalerite particles, which are not very efficient for electronic conductivity. Experiments using doped EBHSS led to an increase of the electrodissolution rate, which consequently increased the recovered zinc.


2021 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Meryem Zouarhi ◽  
Said Abbout ◽  
Hind Hammouch ◽  
Mohamed Chellouli ◽  
Hamid Erramli ◽  
...  

The corrosion of iron in an acidic medium similar to acid rainwater (pH = 3.6) at various rotation speeds was investigated. The investigation included the inhibiting effect of two new green formulations containing oils extracted from the seeds of Jatropha curcas (labeled JAC) and Aleurite moluccana (labeled ALM). The inhibition efficiency was evaluated using electrochemical measurements, after performing an automatic ohmic drop compensation (ZIR). The results obtained show that an increase in the rotation speed leads an increase in the current density (from 75.57 µA/cm2 at 0 rpm to 99.09 µA/cm2 at 1500 rpm). This increase can be explained by the increase in the amount of dissolved oxygen at the electrode surface in the acidic rain solution (pH = 3.6). Also, the two environment-friendly corrosion inhibitors both act as mixed type inhibitors that protect iron against corrosion in the acidic solution. The inhibition efficiency increases with an increase in the inhibitor concentration to attain a maximum of 97% and 96% at 250 ppm of the ALM and the JAC, respectively.


2020 ◽  
Vol 1 (3) ◽  
pp. 373-407
Author(s):  
Romain Rodrigues ◽  
Stéphane Gaboreau ◽  
Julien Gance ◽  
Ioannis Ignatiadis ◽  
Stéphanie Betelu

The use of indirect electrical techniques is gaining interest for monitoring the corrosion of steel in concrete as they do not require any connection to the rebar. In this paper, we provide insights into the physical aspects of the indirect galvanostatic pulse (GP) method in the Wenner configuration. Considering uniform corrosion, the instantaneous ohmic drop is decreased due to the presence of the rebar, which acts as a short-circuit. However, we observed that this phenomenon is independent of the electrochemical parameters of the Butler–Volmer equation. They are, however, responsible for the nonlinear decrease of the current that polarizes the rebar over time, especially for a passive rebar due to its high polarization resistance. This evolution of the resulting potential difference with time is explained by the increase of the potential difference related to concrete resistance and the global decrease of the potential difference related to the polarization resistance of the rebar. The indirect GP technique is then fundamentally different than the conventional one in three-electrode configuration, as here the steady-state potential is not only representative of polarization resistance but also of concrete resistance. Considering non-uniform corrosion, the presence of a small anodic area disturbs the current distribution in the material. This is essentially due to the different capability of anodic and cathodic areas to consume the impressed current, resulting in slowing down the evolution of the transient potential as compared to uniform corrosion. Hence, highly corroding areas have a greater effect on the transient potential than on the steady-state one. The use of this temporal evolution is thus recommended to qualitatively detect anodic areas. For the estimation of their length and position, which is one of the main current problematic issue when performing any measurement on reinforced concrete (RC) structures with conventional techniques, we suggest adjusting the probe spacing to modulate the sensitivity of the technique.


2020 ◽  
Vol 11 (2) ◽  
pp. 106-112
Author(s):  
Aep Patah ◽  
Yulia Rachmawati ◽  
Riyadini Utari ◽  
Achmad Rochliadi

Ionic liquids have interesting properties because they have several advantages compared to conventional organic solvents, such as high thermal stability, high viscosity, good solvent properties, non-flammable, and non-volatile. In electrochemistry, ionic liquids can be used as solvents without the addition of electrolytes. However, ionic liquids still have resistivity properties (uncompensated resistance), thus ohmic drop measurements are needed for a potential correction. Imidazole-based ionic liquids, which are known for their high conductivity and commonly used as a solvent, have been measured of their resistivity as a function of temperature, and type of their cations/anions. Electrochemical Impedance Spectroscopy (EIS) method was chosen to measure the resistivity of ionic liquids and Bode plot was generated for the analysis of the results. The measured resistivities of ionic liquids are in the range of 420 to 1500 ohm. It is concluded that the resistivity of the imidazole-based ionic liquid is influenced by the size of their constituent ions, the viscosity, and the resistance is decreased with increasing temperature.


2020 ◽  
Vol 10 (4) ◽  
pp. 347-360
Author(s):  
Ollo Kambiré ◽  
Lemeyonouin A. G. Pohan ◽  
Konan H. Kondro ◽  
Lassiné Ouattara

The mixed coupled xPtOy-(100-x)IrO2 electrodes (x = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100) were thermally prepared at 450 °C on titanium supports. The prepared electrodes were firstly physically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Afterwards, electrochemical characteri­zations were performed by voltammetric (cyclic and linear) methods in different electrolyte media (KOH and HClO4). It is shown that the prepared electrodes are composed by both PtOy (platinum and platinum oxide) and IrO2 (iridium dioxide). For xPtOy-(100-x)IrO2 electrodes having higher content of IrO2, more surface cracks and pores are formed, defining a higher surface area with more active sites. Higher surface area due to presence of both PtOy and IrO2, is for xPtOy-(100-x)IrO2 electrodes in 1 M KOH solution confirmed by cyclic voltammetry at potentials of the oxide layer region. For all prepared electrodes, voltammetric charges were found higher than for PtOy, while the highest voltammetric charge is observed for the mixed 40PtOy-60IrO2 (x = 40) electrode. The Tafel slopes for oxygen evolution reaction (OER) in either basic (0.1 M KOH) or acid (0.1 M HClO4) media were determined from measured linear voltammograms corrected for the ohmic drop. The values of Tafel slopes for OER at PtOy, 90PtOy-10IrO2 and IrO2 in basic medium are 122, 55 and 40 mV dec-1, respectively. For other mixed electrodes, Tafel slopes of 40 mV dec-1 were obtained. Although proceeding by different OER mechanism, similar values of Tafel slopes were obtained in acid medium, i.e., Tafel slopes of 120, 60 and 39 mV dec-1 were obtained for PtOy, 90PtOy-10IrO2 and IrO2, and 40 mV dec-1 for other mixed electrodes. The analysis of Tafel slope values showed that OER is more rapid on coupled mixed electrodes than on pure PtOy. For mixed xPtOy-(100-x)IrO2 electrodes, OER is more rapid when the molar percent of PtOy meets the following condition: 0 ˂ x ≤ 80. This study also showed that the mixed coupled electrodes are more electro­cata­lytically active for OER than either PtOy or IrO2 in these two media. 


2020 ◽  
Vol 9 (3) ◽  
pp. 3734-3745 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
M.A. Brza ◽  
M.H. Hamsan ◽  
M.F.Z. Kadir ◽  
S.K. Muzakir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document