scholarly journals New gold standard: weakly capped infant Au nanoclusters with record high catalytic activity for 4-nitrophenol reduction and hydrogen generation from an ammonia borane–sodium borohydride mixture

2020 ◽  
Vol 2 (11) ◽  
pp. 5384-5395
Author(s):  
Dinabandhu Patra ◽  
Srinivasa Rao Nalluri ◽  
Hui Ru Tan ◽  
Mohammad S. M. Saifullah ◽  
Ramakrishnan Ganesan ◽  
...  

Active sites are preserved in the citric acid-capped Au nanoclusters prepared in solid state. In water, the rapid dissolution of citric acid allows the reactants to easily access the active sites of infant Au nanoclusters leading to faster catalysis.

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Rola Mohammad Al Soubaihi ◽  
Khaled Mohammad Saoud ◽  
Myo Tay Zar Myint ◽  
Mats A. Göthelid ◽  
Joydeep Dutta

Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.


2019 ◽  
Vol 480 ◽  
pp. 601-610 ◽  
Author(s):  
Yan Guo ◽  
Mingming Dai ◽  
Zhixu Zhu ◽  
Yuqi Chen ◽  
Hui He ◽  
...  

2020 ◽  
Vol 56 (88) ◽  
pp. 13615-13618 ◽  
Author(s):  
Na Pan ◽  
Hanwen Zhang ◽  
Bo Yang ◽  
Hui Qiu ◽  
Longyan Li ◽  
...  

A new class of conductive MOFs can be directly used as a bifunctional electrocatalyst for both the ORR and OER. By adding Ru into the pristine MOF, the resultant catalyst exhibits high catalytic activity in all-solid-state Zn–air batteries.


2019 ◽  
Vol 3 (11) ◽  
pp. 3071-3077 ◽  
Author(s):  
Hongtao Zou ◽  
Qilu Yao ◽  
Meiling Huang ◽  
Meihua Zhu ◽  
Fei Zhang ◽  
...  

Noble-metal-free NiFe nanoparticles were successfully immobilized on nano CeZrO2 solid solutions by a simple impregnation–reduction method, exhibiting a high catalytic activity and 100% H2 selectivity for hydrogen generation from hydrazine solution.


Clay Minerals ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Bo Xue ◽  
Hongmei Guo ◽  
Lujie Liu ◽  
Min Chen

AbstractA new yttrium-zirconium-pillared montmorillonite (Y-Zr-MMT), was synthesized, characterized and used as a Ce catalyst support. The Y-Zr-MMT is a good support for dispersing cerium active sites and it is responsible for the high activity in the total oxidation of acetone, toluene and ethyl acetate. The Y-Zr-MMT shows greater advantages than the conventional alumina/cordierite honeycomb supports such as large specific surface area, lower cost and easier preparation. Catalytic tests demonstrated that Ce/Y-Zr-MMT (Ce loading 8.0%) was the most active, with the total oxidation of acetone, toluene and ethyl acetate being achieved at 220, 300 and 220°C, respectively. The catalyst displayed better activity for the oxidation of acetone and ethyl acetate than a conventional, supported Pd-catalyst under similar conditions. The special structure of the yttrium-doped zirconium-pillared montmorillonite can strengthen the interaction between the CeO2 and Zr-MMT support and improve the dispersion of the Ce particles, which enhances the catalytic activity for the oxidation of VOCs. The new catalyst, 8.0%Ce/Y-Zr-MMT, could be promising for industrial applications due to its high catalytic activity and low cost. The support and the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET specific surface area measurements.


2012 ◽  
Vol 531 ◽  
pp. 358-361 ◽  
Author(s):  
Ming Mei Zhang ◽  
Qian Sun ◽  
Ji Min Xie

A well-dispersed Ni nanoparticles on multi-walled carbon nanotubes (Ni@MWCNTs) was prepared by chemical vapor deposition (CVD) method using a vacuum quartz tube furnace at the temperature of 600°C. The scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed to characterize the synthesized catalyst. It shows an unfirom dispersion of Ni nanoparticles on MWCNTs with the average particle size of 8.6 nm. The as synthesized catalyst was applied in a redox reaction of 4-nitrophenol, which showed very high catalytic activity, stability and well conversion. The catalyst can be easily separated due to the magnetical performance


Sign in / Sign up

Export Citation Format

Share Document