scholarly journals Gas–solid two-phase flow (GSF) mechanochemical synthesis of dual-metal–organic frameworks and research on electrochemical properties

2020 ◽  
Vol 2 (12) ◽  
pp. 5682-5687
Author(s):  
Jun Zhao ◽  
Bo Jin ◽  
Rufang Peng

As an alternative approach for conventional mechanochemical synthesis, a novel gas–solid two-phase flow (GSF) synthetic technique for the mechanochemical synthesis of dual metal–organic frameworks (DMOFs) was reported for the first time.

2020 ◽  
Vol 49 (45) ◽  
pp. 16238-16244 ◽  
Author(s):  
Zihao Wang ◽  
Zongzhe Li ◽  
Marcus Ng ◽  
Phillip J. Milner

We describe the mechanochemical, solvent-free synthesis of metal–organic frameworks using liquid organic base for the first time.


2000 ◽  
Author(s):  
Bofeng Bai ◽  
Tiejun Wu ◽  
Liejin Guo ◽  
Xuejun Chen

Abstract The fluctuating pressure drop for air-water two-phase flow was measured in the vertical upward section of U-type tube with 0.05m I.D. The feature of the fluctuations was extracted by means of statistical and chaotic theories. The influence of liquid superficial velocity on the features was also investigated. The results showed that the mean, root mean square, fractal dimension of pressure drop fluctuations is function of flow regimes. The fractal dimension can be larger than 1.5 in annular flow with great liquid superficial velocity which is reported for the first time. Furthermore, the present paper provided a feasible solution, which the gas-liquid two-phase flow regimes can be recognized automatically and objectively on basis of the combination of the Counter Propagation Network (CPN) and the FFT coefficients of the differential pressure fluctuations. The recognition possibility is determined by the clustering results of the Kohonen layer in the CPN. With the presented test cases, the possibility can be greater than 90 percent for different liquid phase velocity.


Author(s):  
Mohammad S. Jamal ◽  
Abeeb A. Awotunde

AbstractDarcy model fails to accurately model flow in karst reservoirs because the flow profiles in free-flow regions such as vugs, fractures and caves do not conform to Darcy’s law. Flows in karsts are often modelled using the Brinkman model. Recently, the DMOPD approach was introduced to reduce the complexity of modelling single-phase flow in Karst aquifers. Modelling two-phase flow using the Brinkman’s equation requires either a method of tracking the front or introducing the saturation component in the Brinkman’s equation. Both of these methods introduce further complexity to an already complex problem. We propose an alternative approach called the two-phase Darcy’s Model with optimized permeability distribution (TP-DMOPD) to model pressure and saturation distributions in karst reservoirs. The method is a modification to the DMOPD approach. Under the TP-DMOPD model, the caves are initially divided into zones and the permeability of each zone is estimated. During this stage of the TP-DMOPD model, the fluid inside the reservoir is assumed to be in a single-phase. Once the permeability distribution is obtained, the two-phase Darcy model is used to simulate flow in the reservoir. The example applications tested showed that the TP-DMOPD approach was able to model two-phase flow in karst reservoirs.


Sign in / Sign up

Export Citation Format

Share Document