Water soluble palladium(ii) and platinum(ii) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity

2020 ◽  
Vol 44 (15) ◽  
pp. 5762-5773 ◽  
Author(s):  
Tatiyana V. Serebryanskaya ◽  
Mikhail A. Kinzhalov ◽  
Vladimir Bakulev ◽  
Georgii Alekseev ◽  
Anastasiya Andreeva ◽  
...  

Water soluble Pd(ii) and Pt(ii)–ADC species synthesized via the metal-mediated coupling of isocyanides and 1,2-diaminobenzene have demonstrated antitumor potential.

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 875
Author(s):  
Katerina Spyridopoulou ◽  
Tamara Aravidou ◽  
Evangeli Lampri ◽  
Eleni Effraimidou ◽  
Aglaia Pappa ◽  
...  

Lippia citriodora is a flowering plant cultivated for its lemon-scented leaves and used in folk medicine for the preparation of tea for the alleviation of symptoms of gastrointestinal disorders, cold, and asthma. The oil extracted from the plant leaves was shown to possess antioxidant potential and to exert antiproliferative activity against breast cancer. The aim of this study was to further investigate potential antitumor effects of L. citriodora oil (LCO) on breast cancer. The in vitro antiproliferative activity of LCO was examined against murine DA3 breast cancer cells by the sulforhodamine B assay. We further explored the LCO’s pro-apoptotic potential with the Annexin-PI method. The LCO’s anti-migratory effect was assessed by the wound-healing assay. LCO was found to inhibit the growth of DA3 cells in vitro, attenuate their migration, and induce apoptosis. Finally, oral administration of LCO for 14 days in mice inhibited by 55% the size of developing tumors in the DA3 murine tumor model. Noteworthy, in the tumor tissue of LCO-treated mice the apoptotic marker cleaved caspase-3 was elevated, while a reduced protein expression of survivin was observed. These results indicate that LCO, as a source of bioactive compounds, has a very interesting nutraceutical potential.


2020 ◽  
Vol 510 ◽  
pp. 119778 ◽  
Author(s):  
Julia A. Eremina ◽  
Elizaveta V. Lider ◽  
Taisiya S. Sukhikh ◽  
Lyubov S. Klyushova ◽  
Maria L. Perepechaeva ◽  
...  

2012 ◽  
Vol 31 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Mehdi Rajabi ◽  
Mohammad A. Khalilzadeh ◽  
Jamshid Mehrzad

2009 ◽  
Vol 7 (3) ◽  
pp. 569-575 ◽  
Author(s):  
Wen-Zhong Zhu ◽  
Rui-Ding Hu ◽  
Qiu-Yue Lin ◽  
Xiao-Xia Wang ◽  
Xiao-Liang Zheng

AbstractTwo novel norcantharidin acylamide acids (HL1=N-pyrimidine norcantharidin acylamide acid, C12H13N3O4; HL2=N-pyridine norcantharidin acylamide acid, C13H14N2O4) were synthesized by a reaction of norcantharidin(NCTD) with 2-aminopyrimidine and 2-aminopyridine, respectively. Their structures were characterized by elemental analysis, IR, UV and 1 H NMR. Fluorescence titration and viscosity measurements indicated that HL1, HL2 and HL3 (HL3=N-phenyl norcantharidin acylamide acid, C14H15NO4) can bind calf thymus DNA via partial intercalation. The liner Stern-Volmer quenching constant Ksv values for HL1, HL2 and HL3 were 2.05 × 104 L mol−1, 1.15 × 104 L mol−1 and 8.30×103 L mol−1, respectively. Two compounds containing heterocycle of HL1 and HL2 have been found to cleave pBR322 plasmid DNA at physiological pH and temperature. The test of antiproliferation activity showed that the compounds had moderate to strong antiproliferative ability against the tested cell lines except of HL3 against the SMMC7721 cell line. The results indicated that the heterocycle attached to the norcantharidin was favorable to antiproliferative activity. This result was consistent with the DNA binding experiment.


2008 ◽  
Vol 6 (22) ◽  
pp. 4157 ◽  
Author(s):  
Yoshiya Ikawa ◽  
Shoji Moriyama ◽  
Hiroyuki Harada ◽  
Hiroyuki Furuta

Heterocycles ◽  
2001 ◽  
Vol 55 (3) ◽  
pp. 523 ◽  
Author(s):  
Hisatsugu Okada ◽  
Hiroyasu Imai ◽  
Yoshio Uemori

Sign in / Sign up

Export Citation Format

Share Document