Engineering bio-molecular device with biocompatible sensor via symmetric encryption–decryption of spectroscopic signals towards F− detection and Zn2+ recognition by the imine hydrolysis pathway

2020 ◽  
Vol 44 (35) ◽  
pp. 15251-15259 ◽  
Author(s):  
Pritam Ghosh ◽  
Suparna Paul ◽  
Debanjan Dey ◽  
Saibal Jana ◽  
Biswajit Gopal Roy ◽  
...  

A small molecular probe was synthesized and its response towards biologically significant ions Zn2+ and F− with low detection threshold (Zn2+: 50 nM & F−: 3 μM) was investigated as well as Bio-molecular device designing was performed.

Author(s):  
Göran Pulkkis ◽  
Kaj J. Grahn

Quantum cryptography will have a severe impact on information security technology. The objective of this article is to present state-of-the-art and future possibilities of two quantum cryptography protocol types. These protocols are for absolutely secure distribution of symmetric encryption/ decryption keys and for creating secure digital signatures.


1968 ◽  
Vol 73 (3, Pt.1) ◽  
pp. 268-272 ◽  
Author(s):  
Robert D. Hare

2020 ◽  
Author(s):  
Linshu Zhou ◽  
Fang Liu ◽  
Tang Hai ◽  
Jun Jiang ◽  
Dongrui Man ◽  
...  

Absolute pitch (AP), a superior ability of pitch letter naming in the absence of a reference note, has long been viewed as an indicator of human musical talent and thus as evidence for the adaptationist hypothesis of music evolution. Little is known, however, whether AP possessors are superior to non-AP possessors in music processing. The present study investigated whether the AP ability facilitates musical tension processing in perceptual and experienced tasks. Twenty-one AP possessors and 21 matched non-AP possessors were tested using novel melodies in C and non-C contexts. Results indicated that the two groups provided comparable ratings of perceived and felt tension for melodies in both contexts. While AP possessors demonstrated lower accuracy with longer reaction time than non-AP possessors in naming movable solfège syllables for pitch in the pretest, their tension rating profiles showed a similar tonal hierarchy as non-AP possessors in regard to the stability of the ending tones of the melodies in both major and minor keys. Correlation analyses suggested that musical tension ratings were not significantly related to performance in pitch letter, movable solfège syllable naming, pitch change detection threshold, or pitch direction discrimination threshold for either group. These findings suggest that pitch naming abilities (either pitch letter or movable solfège syllable naming) do not benefit processing of perceived or felt musical tension, providing evidence to support the hypothesis that AP ability is not associated with advantage in music processing.


2011 ◽  
Vol 27 (4) ◽  
pp. 335-344 ◽  
Author(s):  
Huiyun ZHAO ◽  
Yan LIU ◽  
Bing JIA ◽  
Fan WANG ◽  
Zhaofei LIU

2020 ◽  
Vol 16 (2) ◽  
pp. 280-289
Author(s):  
Ghalib H. Alshammri ◽  
Walid K. M. Ahmed ◽  
Victor B. Lawrence

Background: The architecture and sequential learning rule-based underlying ARFIS (adaptive-receiver-based fuzzy inference system) are proposed to estimate and predict the adaptive threshold-based detection scheme for diffusion-based molecular communication (DMC). Method: The proposed system forwards an estimate of the received bits based on the current molecular cumulative concentration, which is derived using sequential training-based principle with weight and bias and an input-output mapping based on both human knowledge in the form of fuzzy IFTHEN rules. The ARFIS architecture is employed to model nonlinear molecular communication to predict the received bits over time series. Result: This procedure is suitable for binary On-OFF-Keying (Book signaling), where the receiver bio-nanomachine (Rx Bio-NM) adapts the 1/0-bit detection threshold based on all previous received molecular cumulative concentrations to alleviate the inter-symbol interference (ISI) problem and reception noise. Conclusion: Theoretical and simulation results show the improvement in diffusion-based molecular throughput and the optimal number of molecules in transmission. Furthermore, the performance evaluation in various noisy channel sources shows promising improvement in the un-coded bit error rate (BER) compared with other threshold-based detection schemes in the literature.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 795
Author(s):  
Vincent Lahoche ◽  
Mohamed Ouerfelli ◽  
Dine Ousmane Samary ◽  
Mohamed Tamaazousti

The tensorial principal component analysis is a generalization of ordinary principal component analysis focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism, based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing an effective description keeping only relevant features in the low “energy” (i.e., large eigenvalues) limit and thus providing universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Pereira ◽  
Pierre Megevand ◽  
Mi Xue Tan ◽  
Wenwen Chang ◽  
Shuo Wang ◽  
...  

AbstractA fundamental scientific question concerns the neural basis of perceptual consciousness and perceptual monitoring resulting from the processing of sensory events. Although recent studies identified neurons reflecting stimulus visibility, their functional role remains unknown. Here, we show that perceptual consciousness and monitoring involve evidence accumulation. We recorded single-neuron activity in a participant with a microelectrode in the posterior parietal cortex, while they detected vibrotactile stimuli around detection threshold and provided confidence estimates. We find that detected stimuli elicited neuronal responses resembling evidence accumulation during decision-making, irrespective of motor confounds or task demands. We generalize these findings in healthy volunteers using electroencephalography. Behavioral and neural responses are reproduced with a computational model considering a stimulus as detected if accumulated evidence reaches a bound, and confidence as the distance between maximal evidence and that bound. We conclude that gradual changes in neuronal dynamics during evidence accumulation relates to perceptual consciousness and perceptual monitoring in humans.


Sign in / Sign up

Export Citation Format

Share Document