Absolute pitch ability is not associated with advantage in musical tension processing

2020 ◽  
Author(s):  
Linshu Zhou ◽  
Fang Liu ◽  
Tang Hai ◽  
Jun Jiang ◽  
Dongrui Man ◽  
...  

Absolute pitch (AP), a superior ability of pitch letter naming in the absence of a reference note, has long been viewed as an indicator of human musical talent and thus as evidence for the adaptationist hypothesis of music evolution. Little is known, however, whether AP possessors are superior to non-AP possessors in music processing. The present study investigated whether the AP ability facilitates musical tension processing in perceptual and experienced tasks. Twenty-one AP possessors and 21 matched non-AP possessors were tested using novel melodies in C and non-C contexts. Results indicated that the two groups provided comparable ratings of perceived and felt tension for melodies in both contexts. While AP possessors demonstrated lower accuracy with longer reaction time than non-AP possessors in naming movable solfège syllables for pitch in the pretest, their tension rating profiles showed a similar tonal hierarchy as non-AP possessors in regard to the stability of the ending tones of the melodies in both major and minor keys. Correlation analyses suggested that musical tension ratings were not significantly related to performance in pitch letter, movable solfège syllable naming, pitch change detection threshold, or pitch direction discrimination threshold for either group. These findings suggest that pitch naming abilities (either pitch letter or movable solfège syllable naming) do not benefit processing of perceived or felt musical tension, providing evidence to support the hypothesis that AP ability is not associated with advantage in music processing.

2013 ◽  
Vol 23 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Amy Fancourt ◽  
Frederic Dick ◽  
Lauren Stewart

2021 ◽  
Vol 30 (1) ◽  
pp. 160-169
Author(s):  
Yang-Soo Yoon ◽  
Callie Michelle Boren ◽  
Brianna Diaz

Purpose To measure the effect of testing conditions (in the soundproof booth vs. quiet room), test order, and number of test sessions on spectral and temporal processing in normal-hearing (NH) listeners. Method Thirty-two adult NH listeners participated in the three experiments. For all three experiments, the stimuli were presented to the left ear at the subjects' most comfortable level through headphones. All tests were administered in an adaptive three-alternative forced-choice paradigm. Experiment 1 was designed to compare the effect of soundproof booth and quiet room test conditions on amplitude modulation detection threshold and modulation frequency discrimination threshold with each of the five modulation frequencies. Experiment 2 was designed to compare the effect of two test orders on the frequency discrimination thresholds under the quiet room test conditions. The thresholds were first measured in the ascending and descending order of four pure tones, and then with counterbalanced order. For Experiment 3, the amplitude discrimination threshold under the quiet room testing condition was assessed 3 times to determine the effect of the number of test sessions. Then the thresholds were compared over the sessions. Results Results showed no significant effect of test environment. The test order is an important variable for frequency discrimination, particularly between piano tunes and pure tones. Results also show no significant difference across test sessions. Conclusions These results suggest that a controlled test environment may not be required in spectral and temporal assessment for NH listeners. Under the quiet test environment, a single outcome measure is sufficient, but test orders should be counterbalanced.


Author(s):  
Carlo Cravero ◽  
Davide Marsano

Abstract High-speed centrifugal compressor requirements include a wide operating range between choking and stall especially for turbocharging applications. The prediction of the stability limit at different speeds is still challenging. In literature, several studies have been published on the phenomena that trigger the compressor instability. However, a comprehensive analysis of criteria that can be used in the first steps of centrifugal compressors design to predict the stability limit is still missing. In previous work the authors have already presented a criterion, so called “Stability Parameter”, to predict the surge line of centrifugal compressors based on a simplified CFD approach that does not require excessive computational resources and that can be efficiently used in the preliminary design phases. The above methodology has demonstrated its accuracy for centrifugal compressors with vaned diffuser, but a lower accuracy has been detected for vaneless diffusers. Before proceeding to identify additional criteria focused on compressors with vaneless diffuser, an in-depth fluid dynamics analysis has been necessary. This analysis has been also carried out through fully 3D unsteady simulations to allow identifying the real phenomena linked to the trigger of the instability of centrifugal compressors. It has been found how these phenomena are strongly related to the rotational speed, in particular have been shown the key role of the volute at high rotational speed.


2015 ◽  
Vol 33 (2) ◽  
pp. 179-198 ◽  
Author(s):  
Hila Tamir-Ostrover ◽  
Zohar Eitan

While determining an appropriate tempo is crucial to music performers, composers and listeners, few empirical studies have investigated the musical factors affecting tempo choices. In two experiments we examined how aspects of musical pitch affect tempo choice, by asking participants (musically trained and untrained) to adjust the tempi of melodic sequences varying in pitch register and pitch direction, as well as sequences typically associated with specific registers in common period music. In Experiment 1, faster tempi were assigned to higher registers. Specific melodic direction (rise vs. fall) did not affect tempo preferences; nevertheless, pitch change in both directions elicited faster tempi than a repeating, unchanging pitch. The effect of register on tempo preference was stronger for participants with music training, and also (unexpectedly) for female participants. In Experiment 2, melodic figures typically related to lower and higher parts in common-period music were associated with slower and faster tempi, respectively. Results support a “holistic” notion of musical tempo, viewing the choice of proper tempo as determined by interactions among diverse musical dimensions, including aspects of pitch structure, rather than by rhythmic considerations alone. The experimental design presented here can be further applied to explore the effects of other musical parameters on tempo preferences.


Author(s):  
Jong-Su Bae ◽  
Taewung Kim ◽  
Hyun-Yong Jeong

There is a need for a higher mast of a reach truck in the market, but a higher mast brings a safety concern. Usually, it is more plausible to fall in the roll direction than in the pitch direction. Since a reach truck with a high mast is a heavy and its center of gravity is high, it is not easy to conduct tests to evaluate its stability. If there is a mathematical tool to evaluate the stability of a reach truck, it is easy to evaluate a design in terms of stability and to modify the design in order to increase its stability. In this study, a variational method using a total potential function was used to make a mathematical means to evaluate the stability of a reach truck. By using the mathematical means the stability of a reach truck was evaluated and compared with FE simulation results.


2016 ◽  
Vol 34 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Dafna Kohn ◽  
Zohar Eitan

We examined how children (5- and 8-year-olds) associate changes in musical parameters with bodily motion, using movement and verbal tasks. In Task 1, participants moved to short musical stimuli involving bidirectional changes in pitch, loudness, or tempo. In Task 2, participants selected motion features appropriate to the same stimuli (forced-choice verbal task). In Task 1 the distribution of movement features significantly varied for different musical parameters: pitch change associated most strongly with vertical motion, loudness change with muscular energy and vertical motion, and tempo change with speed and muscular energy. In both tasks and for both ages, directions of change in motion and musical parameters correlated, e.g., increase in loudness was associated with increasing speed, increasing muscular energy, and spatial rise. The effect of pitch direction was mediated by temporal order, suggesting that overall pitch contour, rather than local direction only, affects bodily motion. Age affected responses to pitch direction, rather than loudness or tempo change. Results suggest that children consistently correlate musical and movement features through both verbal and motion responses, presenting an intricate web of auditory-motor-cognitive mappings.


2017 ◽  
Vol 34 (5) ◽  
pp. 569-584 ◽  
Author(s):  
Zohar Eitan ◽  
Moshe Shay Ben-Haim ◽  
Elizabeth Hellmuth Margulis

It is undisputed that the cognition of tonal music is primarily established by pitch relationships set within a tonal scheme such as a major or minor key. The corresponding notion—that absolute pitch and absolute key are largely inconsequential for tonal cognition—thus seems inevitable. Here, we challenge the latter notion, presenting data suggesting that absolute pitch and absolute key significantly modify listeners’ judgments of tonal fit and tonal tension. In two experiments extending the probe tone technique (as applied in Krumhansl & Kessler, 1982) participants heard a brief tonal context (a major triad in Experiment 1, a harmonic progression in Experiment 2) followed by individual probe tones, and rated how well each probe fitted the preceding context, as well as the musical tension conveyed by each probe. Two maximally distant key contexts, G major and D♭ major, were used in both experiments and in both tasks. Ratings revealed significant absolute pitch effects in both tasks, though in different ways. In the tonal fit task, diatonic pitches in G major were rated higher than those in D♭ major; in contrast, chromatic pitches were rated higher in D♭ major, compared to G. In the tension task, overall ratings were significantly higher for D♭ major contexts than for G major context (Experiment 1). Importantly, these effects reflect the occurrence frequency of pitch classes and keys in the tonal repertory: frequent pitch classes were rated as better fits than rarer ones, and a rarer key (D♭) rated tenser than a frequently-occurring key (G). Absolute pitch effects were most strongly manifested by participants without formal training, for whom the relative pitch effects of the tonal hierarchy were weak, and were stronger when tonal context was weaker (Experiment 1 as compared to Experiment 2). Results suggest that implicit absolute pitch perception, reflecting key and pitch class occurrence frequency, significantly affects tonal music processing; such absolute pitch effects may be activated principally when tonal perception or tonal cues are lacking.


Author(s):  
Li Wang ◽  
C. Philip Beaman ◽  
Cunmei Jiang ◽  
Fang Liu

AbstractProsody or “melody in speech” in autism spectrum disorder (ASD) is often perceived as atypical. This study examined perception and production of statements and questions in 84 children, adolescents and adults with and without ASD, as well as participants’ pitch direction discrimination thresholds. The results suggested that the abilities to discriminate (in both speech and music conditions), identify, and imitate statement-question intonation were intact in individuals with ASD across age cohorts. Sensitivity to pitch direction predicted performance on intonation processing in both groups, who also exhibited similar developmental changes. These findings provide evidence for shared mechanisms in pitch processing between speech and music, as well as associations between low- and high-level pitch processing and between perception and production of pitch.


Sign in / Sign up

Export Citation Format

Share Document