Highly active Fe–N-doped porous hollow carbon nanospheres as oxygen reduction electrocatalysts in both acidic and alkaline media

Nanoscale ◽  
2020 ◽  
Vol 12 (28) ◽  
pp. 15115-15127 ◽  
Author(s):  
Meng-geng Hao ◽  
Rong-min Dun ◽  
Yu-miao Su ◽  
Wen-mu Li

MF nanospheres decomposed into NH3 and CO2 as soft templates, nitrogen sources and pore-forming agents.

2020 ◽  
Vol 9 (1) ◽  
pp. 843-852
Author(s):  
Hunan Jiang ◽  
Jinyang Li ◽  
Mengni Liang ◽  
Hanpeng Deng ◽  
Zuowan Zhou

AbstractAlthough Fe–N/C catalysts have received increasing attention in recent years for oxygen reduction reaction (ORR), it is still challenging to precisely control the active sites during the preparation. Herein, we report FexN@RGO catalysts with the size of 2–6 nm derived from the pyrolysis of graphene oxide and 1,1′-diacetylferrocene as C and Fe precursors under the NH3/Ar atmosphere as N source. The 1,1′-diacetylferrocene transforms to Fe3O4 at 600°C and transforms to Fe3N and Fe2N at 700°C and 800°C, respectively. The as-prepared FexN@RGO catalysts exhibited superior electrocatalytic activities in acidic and alkaline media compared with the commercial 10% Pt/C, in terms of electrochemical surface area, onset potential, half-wave potential, number of electrons transferred, kinetic current density, and exchange current density. In addition, the stability of FGN-8 also outperformed commercial 10% Pt/C after 10000 cycles, which demonstrates the as-prepared FexN@RGO as durable and active ORR catalysts in acidic media.


2019 ◽  
Vol 71 ◽  
pp. 234-241 ◽  
Author(s):  
Yun Sik Kang ◽  
Yoonhye Heo ◽  
Jae Young Jung ◽  
Yeonsun Sohn ◽  
Soo-Hyoung Lee ◽  
...  

2020 ◽  
Vol 824 ◽  
pp. 153655
Author(s):  
Yuzhe Wu ◽  
Qipeng Cai ◽  
Yuntong Li ◽  
Huixiang Liu ◽  
Jie Mao ◽  
...  

2019 ◽  
Vol 92 (8) ◽  
pp. 671-678 ◽  
Author(s):  
P.C. Meléndez-González ◽  
Maria Esther Sánchez-Castro ◽  
Ivonne Liliana Alonso-Lemus ◽  
R. Pérez-Hernández ◽  
Beatriz Escobar-Morales ◽  
...  

ACS Nano ◽  
2018 ◽  
Vol 12 (6) ◽  
pp. 5674-5683 ◽  
Author(s):  
Haibo Tan ◽  
Jing Tang ◽  
Joel Henzie ◽  
Yunqi Li ◽  
Xingtao Xu ◽  
...  

2017 ◽  
Vol 5 (10) ◽  
pp. 4868-4878 ◽  
Author(s):  
Lili Huo ◽  
Baocang Liu ◽  
Geng Zhang ◽  
Rui Si ◽  
Jian Liu ◽  
...  

2D Layered meso-M/N-C/N-G nanocomposites with high specific surface area, homogeneous distribution of ultra-small M-N-C nanoparticles less than 5 nm, and mesopores with a size of ∼3.6 nm exhibit excellent electrocatalytic activity toward oxygen reduction reaction (ORR) in acidic and alkaline media.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Dong-Li Meng ◽  
Chun-Hui Chen ◽  
Jun-Dong Yi ◽  
Qiao Wu ◽  
Jun Liang ◽  
...  

It is highly desired but challenging to achieve highly active single-atom Fe sites from iron-based metal-organic frameworks (MOFs) for efficient oxygen reduction reaction (ORR) due to the easy aggregation of iron species and formation of the inactive Fe-based particles during pyrolysis. Herein, a facile migration-prevention strategy is developed involving the incorporation of polyaniline (PANI) into the pores of iron porphyrinic-based MOF PCN-224(Fe) and followed by pyrolysis to obtain the single-atom Fe implanted N-doped porous carbons material PANI@PCN-224(Fe)-900. The introduced PANI inside the pores of PCN-224(Fe) not only served as protective fences to prevent the aggregation of the iron species during thermal annealing, but also acted as nitrogen sources to increase the nitrogen content and form Fe-Nx-C active sites. Compared with the pristine PCN-224(Fe) derived carbonization sample containing Fe-based particles, the carbonaceous material PANI@PCN-224(Fe)-900 without inactive Fe-based particles exhibited superb ORR electrocatalytic activity with a more positive half-wave potential, significantly improved stability in both alkaline media, and more challenging acidic condition. The migration-prevention strategy provides a new way to fabricate atomically dispersed metal active sites via pyrolysis approach for promoting catalysis.


Sign in / Sign up

Export Citation Format

Share Document