scholarly journals Photodoping of metal oxide nanocrystals for multi-charge accumulation and light-driven energy storage

Nanoscale ◽  
2021 ◽  
Author(s):  
Michele Ghini ◽  
Nicola Curreli ◽  
Andrea Camellini ◽  
Mengjiao Wang ◽  
Aswin Asaithambi ◽  
...  

Light-driven multi-charge accumulation (i.e., photodoping) of doped metal oxide nanocrystals opens the way to innovative solutions for the direct conversion and storage of the solar energy.

Author(s):  
Qianfeng Qiu ◽  
Yuran Shi ◽  
Grace G. D. Han

This review illustrates various structural design principles for molecular solar thermal (MOST) energy storage materials based on photoswitches that operate in different conditions, e.g. solution state, neat liquid, and solid,...


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Nathan P. Siegel ◽  
Michael D. Gross ◽  
Robert Coury

Spherical sintered bauxite particles between 200 μm and 700 μm in diameter have been shown to be effective in the direct absorption and storage of concentrated solar energy. These particles are commercially available in large quantities and exhibit as-received solar weighted absorptance (αs) greater than 0.90, which gradually degrades with extended heating in air at 700 °C and above. The degradation mechanism is an oxidation reaction that can be reversed via thermal or chemical reduction, resulting in αs > 0.95 along with enhanced resistance to further degradation for some formulations. Certain metal oxide pigments, added to Al2O3:SiO2, have proven to achieve solar weighted absorptance levels similar to those of the commercially available particles and may be promising alternatives to currently available materials.


2018 ◽  
Vol 8 (12) ◽  
pp. 2618 ◽  
Author(s):  
Laurie André ◽  
Stéphane Abanades ◽  
Laurent Cassayre

Thermochemical energy storage is promising for the long-term storage of solar energy via chemical bonds using reversible redox reactions. The development of thermally-stable and redox-active materials is needed, as single metal oxides (mainly Co and Mn oxides) show important shortcomings that may delay their large-scale implementation in solar power plants. Drawbacks associated with Co oxide concern chiefly cost and toxicity issues while Mn oxide suffers from slow oxidation kinetics and poor reversibility. Mixed metal oxide systems could alleviate the above-mentioned issues, thereby achieving improved materials characteristics. All binary oxide mixtures of the Mn-Co-Fe-Cu-O system are considered in this study, and their properties are evaluated by experimental measurements and/or thermodynamic calculations. The addition of Fe, Cu or Mn to cobalt oxide decreased both the oxygen storage capacity and energy storage density, thus adversely affecting the performance of Co3O4/CoO. Conversely, the addition of Fe, Co or Cu (with added amounts above 15, 40 and 30 mol%, respectively) improved the reversibility, re-oxidation rate and energy storage capacity of manganese oxide. Computational thermodynamics was applied to unravel the governing mechanisms and phase transitions responsible for the materials behavior, which represents a powerful tool for predicting the suitability of mixed oxide systems applied to thermochemical energy storage.


2019 ◽  
Vol 7 (21) ◽  
pp. 13096-13102 ◽  
Author(s):  
Yuanchun Ji ◽  
Yuan Ma ◽  
Rongji Liu ◽  
Yanjiao Ma ◽  
Kecheng Cao ◽  
...  

The tuneable, modular design of metal oxide/carbon composites with applications in electrocatalysis and electrochemical energy storage based on polyoxometalate-functionalized metal organic frameworks is reported.


2018 ◽  
Vol 1 (2) ◽  
pp. 40-51 ◽  
Author(s):  
Muhammad Burhan ◽  
Muhammad Wakil Shahzad ◽  
Kim Choon Ng

Standalone power systems have vital importance as energy source for remote area. On the other hand, a significant portion of such power production is used for cooling purposes. In this scenario, renewable energy sources provide sustainable solution, especially solar energy due to its global availability. Concentrated photovoltaic (CPV) system provides highest efficiency photovoltaic technology, which can operate at x1000 concentration ratio. However, such high concentration ratio requires heat dissipation from the cell area to maintain optimum temperature. This paper discusses the size optimization algorithm of sustainable cooling system using CPVT. Based upon the CPV which is operating at x1000 concentration with back plate liquid cooling, the CPVT system size is optimized to drive a hybrid mechanical vapor compression (MVC) chiller and adsorption chiller, by utilizing both electricity and heat obtained from the solar system. The electrolysis based hydrogen is used as primary energy storage system along with the hot water storage tanks. The micro genetic algorithm (micro-GA) based optimization algorithm is developed to find the optimum size of each component of CPVT-Cooling system with uninterrupted power supply and minimum cost, according to the developed operational strategy. The hybrid system is operated with solar energy system efficiency of 71%.


2021 ◽  
pp. 100764
Author(s):  
Qiao Xu ◽  
Xianglei Liu ◽  
Qingyang Luo ◽  
Yanan Song ◽  
Haolei Wang ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 362
Author(s):  
Yabibal Getahun Dessie ◽  
Qi Hong ◽  
Bachirou Guene Lougou ◽  
Juqi Zhang ◽  
Boshu Jiang ◽  
...  

Metal oxide materials are known for their ability to store thermochemical energy through reversible redox reactions. Metal oxides provide a new category of materials with exceptional performance in terms of thermochemical energy storage, reaction stability and oxygen-exchange and uptake capabilities. However, these characteristics are predicated on the right combination of the metal oxide candidates. In this study, metal oxide materials consisting of pure oxides, like cobalt(II) oxide, manganese(II) oxide, and iron(II, III) oxide (Fe3O4), and mixed oxides, such as (100 wt.% CoO, 100 wt.% Fe3O4, 100 wt.% CoO, 25 wt.% MnO + 75 wt.% CoO, 75 wt.% MnO + 25 wt.% CoO) and 50 wt.% MnO + 50.wt.% CoO), which was subjected to a two-cycle redox reaction, was proposed. The various mixtures of metal oxide catalysts proposed were investigated through the thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersive X-ray (EDS), and scanning electron microscopy (SEM) analyses. The effect of argon (Ar) and oxygen (O2) at different gas flow rates (20, 30, and 50 mL/min) and temperature at thermal charging step and thermal discharging step (30–1400 °C) during the redox reaction were investigated. It was revealed that on the overall, 50 wt.% MnO + 50 wt.% CoO oxide had the most stable thermal stability and oxygen exchange to uptake ratio (0.83 and 0.99 at first and second redox reaction cycles, respectively). In addition, 30 mL/min Ar–20 mL/min O2 gas flow rate further increased the proposed (Fe,Co,Mn)Ox mixed oxide catalyst’s cyclic stability and oxygen uptake ratio. SEM revealed that the proposed (Fe,Co,Mn)Ox material had a smooth surface and consisted of polygonal-shaped structures. Thus, the proposed metallic oxide material can effectively be utilized for high-density thermochemical energy storage purposes. This study is of relevance to the power engineering industry and academia.


Sign in / Sign up

Export Citation Format

Share Document