scholarly journals Dual stimuli-responsive polyphosphazene-based molecular gates for controlled drug delivery in lung cancer cells

RSC Advances ◽  
2020 ◽  
Vol 10 (46) ◽  
pp. 27305-27314
Author(s):  
Yolanda Salinas ◽  
Michael Kneidinger ◽  
Cristina Fornaguera ◽  
Salvador Borrós ◽  
Oliver Brüggemann ◽  
...  

Bottle-brush polyphosphazenes as dual, thermosensitive and pH responsive gatekeepers for mesoporous silica nanoparticles, and their use in controlled drug release.

2015 ◽  
Vol 6 (22) ◽  
pp. 4144-4153 ◽  
Author(s):  
Ziguang Zhao ◽  
Feiyan Zhu ◽  
Xiaozhong Qu ◽  
Qiuhua Wu ◽  
Qian Wang ◽  
...  

In this study, we have successfully designed and fabricated pH-responsive polymeric Janus hollow spheres for controlled drug release.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3950
Author(s):  
Minmin Chen ◽  
Jinxia Hu ◽  
Cancan Bian ◽  
Chenghao Zhu ◽  
Chen Chen ◽  
...  

As a drug delivery system (DDS), traditional mesoporous silica nanoparticles (MSNs) suffer from bioaccumulation in vivo and premature drug release in systemic circulation due to low degradation rate and lack of protective gatekeeper. Herein, we developed a safe and intelligent DDS with characteristics of pH-responsive biodegradation and controlled drug release based on mesoporous silica composite nanoparticles (MSCNs) capped with ZnO quantum dots (ZnO QDs). Acidic degradable MSCNs were successfully synthesized by doping Ca2+ and PO43− into the MSNs’ framework. The in vitro doxorubicin hydrochloride (DOX) release was inhibited at neutral pH 7.4 but triggered significantly at pH 5.0 due to the dissociation of ZnO caps. The internalization behavior and cytotoxicity of 4T1 cells indicated MSCNs-ZnO could efficiently deliver DOX into the cells with significant antitumor activity. Such a DDS with pH-responsive biodegradation and controlled drug release has promising potential for cancer therapy.


2020 ◽  
Vol 11 (19) ◽  
pp. 3296-3304
Author(s):  
Jinkang Dou ◽  
Ruiqi Yang ◽  
Kun Du ◽  
Li Jiang ◽  
Xiayun Huang ◽  
...  

Ultrasound-controlled drug release is a very promising technique for controlled drug delivery due to the unique advantages of ultrasound as the stimulus.


MedChemComm ◽  
2017 ◽  
Vol 8 (9) ◽  
pp. 1797-1805 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Subramanian Bharathiraja ◽  
Panchanathan Manivasagan ◽  
Kang Dae Lee ◽  
Junghwan Oh

Herein, we propose a “host–guest” complexation-based mesoporous silica drug carrier, MSNs@Mela@TTM, for pH-responsive drug delivery applications in cancer therapy.


Nanoscale ◽  
2015 ◽  
Vol 7 (16) ◽  
pp. 7178-7183 ◽  
Author(s):  
Isurika R. Fernando ◽  
Daniel P. Ferris ◽  
Marco Frasconi ◽  
Dmitry Malin ◽  
Elena Strekalova ◽  
...  

Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved.


2017 ◽  
Vol 43 (3) ◽  
pp. 228-239
Author(s):  
Hakan Ayhan ◽  
Fatma Ayhan

Abstract Objective: In the scope of presented work, synthesis of water based acrylate hydrogels, characterization, and their usage in controlled drug release systems were aimed to investigate. Methods: Synthesis of acrylate based hydrogels that have different properties was carried out by free radical photopolymerization using photoinitiator. Because of its high biocompatibility, 2-hydroxyethyl metacrylate (HEMA) was used as monomer. Then drug release experiments were performed in pH 7.4 and 1.2 buffer solutions with certain ionic strength while the dynamic swelling behaviors were also determined. In the last part of the work, drug activities of synthesized drug-loaded hydrogels were tested in mediums containing Staphylococcus aureus and Pseudomonas aeruginosa bacteria cultures. Results: ATR-FTIR spectrums of all synthesized hydrogels were analyzed. The characteristic O-H, C-H, C=O, C-O tension vibrations bands were observed in the spectrums of the hydrogels. The rate of drug release in acidic pH 1.2 for two types of hydrogels was observed to be much faster than at pH 7.4. It was determined that hydrogel swelling ratio decrease with increasing monomer ratio. All drug loaded hydrogels were effective to inhibit the growth of both two bacterial strains. Conclusion: Hydrogels synthesized were found to be suitable for the controlled drug delivery applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7559-7566 ◽  
Author(s):  
Wulian Chen ◽  
Luqman Ali Shah ◽  
Li Yuan ◽  
Mohammad Siddiq ◽  
Jianhua Hu ◽  
...  

Controlled drug delivery system based on hydrophilic diblock copolymer covalently linked paclitaxel (PTX) via a disulfide linker.


2016 ◽  
Vol 7 (7) ◽  
pp. 1475-1485 ◽  
Author(s):  
Panayiotis Bilalis ◽  
Leto-A. Tziveleka ◽  
Spyridon Varlas ◽  
Hermis Iatrou

Mesoporous silica nanoparticles (MSNs) bearing poly(l-histidine)-grafted nanogates were prepared by surface-initiated ROP. The obtained polypeptide-functionalized MSNs were used as smart pH-responsive nanocarriers for controlled drug release applications.


Sign in / Sign up

Export Citation Format

Share Document