scholarly journals An ultrasonic-assisted synthesis of leather-derived luminescent graphene quantum dots: catalytic reduction and switch on–off probe for nitro-explosives

RSC Advances ◽  
2020 ◽  
Vol 10 (39) ◽  
pp. 22959-22965
Author(s):  
Shamsa Kanwal ◽  
Shanaz Jahan ◽  
Farukh Mansoor

The current research effort demonstrates the ultrasonic-assisted synthesis of highly fluorescent graphene quantum dots (GQDs) of ∼5 nm diameter.

2020 ◽  
Vol 16 (3) ◽  
pp. 308-315
Author(s):  
Xiaoyan Li ◽  
Hui Xie ◽  
Guiling Luo ◽  
Yanyan Niu ◽  
Xiaobao Li ◽  
...  

Background: Graphene quantum dots (GQD) is a new member of carbon nanomaterial that has attracted increasing attention owing to its better chemical inertness, low cytotoxicity, large specific surface area, cheap cost, suitable conductivity and excellent biocompatibility. Methods: Electrochemical behaviors of this modified electrode were studied by cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical investigations of Nafion/Hb/GQD/ CILE were carried out with electrochemical parameters calculated. Results: In the phosphate buffer solution with a pH value of 5.0, good linear relationships between the catalytic reduction current and the concentration of substrate were got for TCA (6.0~100.0 mmol·L-1), NaNO2 (2.0~12.0 mmol·L-1) and H2O2 (6.0~30.0 mmol·L-1). The proposed method was applied to NaNO2 concentration detection in soak water from picked vegetables with satisfactory results. Conclusion: This Nafion/Hb/GQD/CILE had a good bioelectrocatalytic activity to different substrates such as trichloroacetic acid, NaNO2 and H2O2 reduction with the advantages including wide detection range, low detection limit and good stability. Therefore, the application of GQD in electrochemical sensor was extended in this paper.


2018 ◽  
Vol 7 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Weifeng Chen ◽  
Guo Lv ◽  
Weimin Hu ◽  
Dejiang Li ◽  
Shaona Chen ◽  
...  

AbstractAs a new class of fluorescent carbon materials, graphene quantum dots (GQDs) have attracted tremendous attention due to their outstanding properties and potential applications in biological, optoelectronic, and energy-related fields. Herein, top-down and bottom-up strategies for the fabrication of GQDs, mainly containing oxidative cleavage, the hydrothermal or solvothermal method, the ultrasonic-assisted or microwave-assisted process, electrochemical oxidation, controllable synthesis, and carbonization from small molecules or polymers, are discussed. Different methods are presented in order to study their characteristics and their influence on the final properties of the GQDs. The respective advantages and disadvantages of the methods are introduced. With regard to some important or novel methods, the mechanisms are proposed for reference. Moreover, recent exciting progresses on the applications of GQD, such as sensors, bio-imaging, drug carriers, and solar cells are highlighted. Finally, a brief outlook is given, pointing out the issues still to be settled for further development. We believe that new preparation methods and properties of GQDs will be found, and GQDs will play more important roles in novel devices and various applications.


2016 ◽  
Vol 31 (4) ◽  
pp. 337 ◽  
Author(s):  
SUN Xiao-Dan ◽  
LIU Zhong-Qun ◽  
YAN Hao

2014 ◽  
Vol 35 (4) ◽  
pp. 372
Author(s):  
Yong-qiang MA ◽  
Zhen-guo WANG ◽  
Xue-li GOU ◽  
Na LI ◽  
Ya-qiang FENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document