scholarly journals Nanoleite: a new semiconducting carbon allotrope predicted by density functional theory

RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 38782-38787
Author(s):  
Ru Li ◽  
Larry A. Burchfield ◽  
Khalid Askar ◽  
Mohamed Al Fahim ◽  
Hamdan Bin Issa Al Nahyan ◽  
...  

A new carbon allotrope with an indirect bandgap of 2.06 eV has been predicted by density functional theory, which has a high absorption coefficient in the visible spectral range that is suitable for solar cell application.

Author(s):  
I Magaji ◽  
A Shuaibu ◽  
M. S Abubakar ◽  
M Isah

Lead (Pb) free (non-toxic) perovskite solar cells materials have attracted great interest in the commercialization of the photovoltaic devices. In this work, density functional theory (DFT) and linear response time-dependent within density functional theory (TDDFT) are used to simulate and investigate the effect of gold (Au) dopedPb-free double halide perovskite A2BB?X6(A = Cs; B = In, Au; B? = Sb; X = Cl) on the structural, electronic, and optical properties for perovskite solar cell application. On the structural properties, bond length and bulk modulus calculations show that the doped compound is more likely to resist deformation than the undoped compound. The calculated band structure for both materials (doped and undoped) reveals the presence of the Valence Band Maximum (VBM) and the Conduction Band Minimum (CBM) at around the same symmetry point which indicates a direct band gap nature (at ???? point). The band gap value for the initial compound (= 0.99 eV) agrees with published theoretical values. For the gold doped compound, the value of the band gap increased to a value of 1.25eV. The result of the optical properties shows that the Au-doped material has higher absorption coefficient, lower reflectivity and higher optical conductivity when compared with the initial, as such demonstrates better properties as a candidate for solar cell applications and in other optoelectronic devices.


Author(s):  
Chen Qian ◽  
Jianjun Li ◽  
Kaiwen Sun ◽  
Chenhui Jiang ◽  
Jialiang Huang ◽  
...  

Antimony selenosulfide, Sb2(S,Se)3, has emerged as a promising light-harvesting material for its high absorption coefficient, suitable bandgap, low-toxic and low-cost constituents. However, the poor stability and high cost of widely...


2021 ◽  
Author(s):  
D. Nicksonsebastin ◽  
P. Pounraj ◽  
Prasath M

Abstract Perylene based novel organic sensitizers for the Dye sensitized solar cell applications are investigated by using Density functional theory (DFT) and time dependant density functional theory (TD-DFT).The designed sensitizers have perylene and dimethylamine (DM) and N-N-dimethylaniline(DMA) functionalized perylene for the dssc applications.π-spacers are thiophene andcyanovinyl groups and cyanoacrylic acid is chosen as the acceptor for the designed sensitizers. The studied sensitizers were fully optimized by density functional theory at B3LYP/6-311G basis set on gas phase and DMF phase. The electronic absorption of the sensitizers is analyzed by TD-DFT at B3LYP/6-311G basis set in both gas and DMF phase.


2019 ◽  
Vol 21 (34) ◽  
pp. 18612-18621 ◽  
Author(s):  
M. Idrees ◽  
H. U. Din ◽  
R. Ali ◽  
G. Rehman ◽  
T. Hussain ◽  
...  

Janus monolayers and their van der Waals heterostuctures are investigated by hybrid density functional theory calculations.


2015 ◽  
Vol 17 (40) ◽  
pp. 27035-27044 ◽  
Author(s):  
Karunakaran Remya ◽  
Cherumuttathu H. Suresh

Polyynes, the smaller analogues of one dimensional infinite chain carbon allotrope carbyne, have been studied for the type and strength of the intermolecular interactions in their dimer and tetramer complexes using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document