Investigating first-year undergraduate chemistry students’ reasoning with reaction coordinate diagrams when choosing among particulate-level reaction mechanisms

Author(s):  
Molly B. Atkinson ◽  
Michael Croisant ◽  
Stacey Lowery Bretz

Reaction coordinate diagrams (RCDs) are an important tool used to visualize the energetics of a chemical reaction. RCDs provide information about the kinetics of the reaction, the mechanism by which the reaction occurs, and the relative thermodynamic stability of the molecules in a reaction. Previous research studies have characterized student thinking about chemical kinetics, including their confusion in distinguishing between kinetics and thermodynamics. Semi-structured interviews were conducted with 44 students enrolled in a second-semester, first-year undergraduate chemistry course to elicit students’ ideas about surface features of RCDs and to examine how students connect those surface features to features of particulate-level reaction mechanisms. Students were provided both a gas-phase reaction and its accompanying RCD, and then they were asked to choose the particulate-level reaction mechanism that best corresponded to both the reaction and the RCD from among several possible particulate-level reaction mechanisms. Students were asked to explain their reasoning throughout the interview. Findings include students who chose the correct mechanism with appropriate reasoning, as well as students who chose the correct mechanism yet still expressed inaccurate ideas related to the surface features of RCDs and the concepts encoded within them. Students struggled to explain and reason with surface features such as peaks, valleys, and peak height. Moreover, students frequently found it difficult to identify meaningful connections between these surface features, the stoichiometry of the reaction, and the steps in a reaction mechanism. In addition, many students failed to mention important features of RCDs when describing their reasoning about the connections between particulate-level reaction mechanisms and RCDs. The implications for incorporating these research findings into teaching practices in first-year undergraduate chemistry contexts are discussed.

2018 ◽  
Vol 19 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Maia Popova ◽  
Stacey Lowery Bretz

Organic chemistry students struggle with understanding the energetics of chemical reactions. Reaction coordinate diagrams are one tool that is widely used in organic chemistry classrooms to assist students with visualizing and explaining the energy changes that take place throughout a reaction. Thirty-six students enrolled in organic chemistry II participated in a qualitative study that used semi-structured interviews to investigate the extent to which students meaningfully extract and integrate information encoded in reaction coordinate diagrams. Results show that students have difficulties explaining the meanings of surface features such as peaks, valleys, peak height, and peak width. Analysis of students’ explanations resulted in four themes that describe students’ challenges with correctly interpreting the features of reaction coordinate diagrams. Students conflated transition states and intermediates, despite being able to recite definitions. Students described the chemical species encoded at points along thex-axis of the reaction coordinate diagrams, while largely ignoring the energies of the species encoded along they-axis. Implications for teaching organic chemistry are discussed.


2019 ◽  
Vol 20 (3) ◽  
pp. 554-569 ◽  
Author(s):  
Amanda Bongers ◽  
Georg Northoff ◽  
Alison B. Flynn

Creating and using models are essential skills in chemistry. Novices and experts alike rely on conceptual models to build their own personal mental models for predicting and explaining molecular processes. There is evidence that chemistry students lack rich mental models of the molecular level; their mental models of reaction mechanisms have often been described as static and not process-oriented. Our goal in this study was to characterize the various mental models students may have when learning a new reaction mechanism and to explore how they use them in different situations. We explored the characteristics of first year organic chemistry students’ (N = 7) mental models of epoxide-opening reaction mechanisms by qualitative analysis of transcripts and written answers following an audio-recorded interview discussion. We discovered that individual learners relied on a combination of both static (with a focus on symbolism and patterns) and dynamic (reactivity as process or as particles in motion) working mental models, and that different working mental models were used depending on the task. Static working mental models were typically used to reason generally about the reaction mechanism and products that the participants provided. Dynamic working mental models were commonly used when participants were prompted to describe how they pictured the reaction happening, and in attempting to describe the structure of a transition state. Implications for research, teaching, and learning from these findings are described herein.


2018 ◽  
Vol 19 (3) ◽  
pp. 732-745 ◽  
Author(s):  
Maia Popova ◽  
Stacey Lowery Bretz

The purpose of this study was to elucidate and describe students’ thinking when making connections between substitution and elimination reactions and their corresponding reaction coordinate diagrams. Thirty-six students enrolled in organic chemistry II participated in individual, semi-structured interviews. Three major themes were identified that characterize students’ difficulties with integrating the information from the reactions and the reaction coordinate diagrams: incorrect ideas about the meanings of the reaction coordinate diagrams’ features, errors when examining reaction mechanisms, and an inability to assess the relative energies of reaction species. These findings suggest that students need support for coherence formation between reactions and reaction coordinate diagrams. Implications for teaching to address these student difficulties are suggested.


2009 ◽  
Vol 08 (06) ◽  
pp. 1217-1226 ◽  
Author(s):  
JUN CAI ◽  
ZHIJIAN WU

Intramolecular amide hydrolysis of N-methylmaleamic acid is revisited at the B3LYP/6-311G(2df, p)//B3LYP/6-31G(d, p) + ZVPE level, including solvent effects at the CPCM-B3LYP/6-311G(2df, p)//Onsager-B3LYP/6-31G(d, p) + ZPVE level. The concerted reaction mechanism is energetically favorable over stepwise reaction mechanisms in both the gas phase and solution. The calculated reaction barriers are significantly lower in solution than in the gas phase. In addition, it is concluded that the substituents of the four N-methylmaleamic acid derivatives considered herein have a significant effect on the gas-phase reaction barriers but a smaller, or little, effect on the barriers in solution.


2018 ◽  
Author(s):  
Yasemin Basdogan ◽  
John Keith

<div> <div> <div> <p>We report a static quantum chemistry modeling treatment to study how solvent molecules affect chemical reaction mechanisms without dynamics simulations. This modeling scheme uses a global optimization procedure to identify low energy intermediate states with different numbers of explicit solvent molecules and then the growing string method to locate sequential transition states along a reaction pathway. Testing this approach on the acid-catalyzed Morita-Baylis-Hillman (MBH) reaction in methanol, we found a reaction mechanism that is consistent with both recent experiments and computationally intensive dynamics simulations with explicit solvation. In doing so, we explain unphysical pitfalls that obfuscate computational modeling that uses microsolvated reaction intermediates. This new paramedic approach can promisingly capture essential physical chemistry of the complicated and multistep MBH reaction mechanism, and the energy profiles found with this model appear reasonably insensitive to the level of theory used for energy calculations. Thus, it should be a useful and computationally cost-effective approach for modeling solvent mediated reaction mechanisms when dynamics simulations are not possible. </p> </div> </div> </div>


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

In a chemical system with many chemical species several questions can be asked: what species react with other species: in what temporal order: and with what results? These questions have been asked for over one hundred years about simple and complex chemical systems, and the answers constitute the macroscopic reaction mechanism. In Determination of Complex Reaction Mechanisms authors John Ross, Igor Schreiber, and Marcel Vlad present several systematic approaches for obtaining information on the causal connectivity of chemical species, on correlations of chemical species, on the reaction pathway, and on the reaction mechanism. Basic pulse theory is demonstrated and tested in an experiment on glycolysis. In a second approach, measurements on time series of concentrations are used to construct correlation functions and a theory is developed which shows that from these functions information may be inferred on the reaction pathway, the reaction mechanism, and the centers of control in that mechanism. A third approach is based on application of genetic algorithm methods to the study of the evolutionary development of a reaction mechanism, to the attainment given goals in a mechanism, and to the determination of a reaction mechanism and rate coefficients by comparison with experiment. Responses of non-linear systems to pulses or other perturbations are analyzed, and mechanisms of oscillatory reactions are presented in detail. The concluding chapters give an introduction to bioinformatics and statistical methods for determining reaction mechanisms.


Author(s):  
Alexander P. Parobek ◽  
Patrick M. Chaffin ◽  
Marcy H. Towns

Reaction coordinate diagrams (RCDs) are chemical representations widely employed to visualize the thermodynamic and kinetic parameters associated with reactions. Previous research has demonstrated a host of misconceptions students adopt when interpreting the perceived information encoded in RCDs. This qualitative research study explores how general chemistry students interpret points and trends on a RCD and how these interpretations impact their inferences regarding the rate of a chemical reaction. Sixteen students participated in semi-structured interviews in which participants were asked to interpret the points and trends along provided RCDs and to compare relative reaction rates between RCDs. Findings derived from this study demonstrate the diversity of graphical reasoning adopted by students, the impact of students’ interpretations of the x-axis of a RCD on the graphical reasoning employed, and the influence of these ideas on inferences made about reaction rate. Informed by analytical frameworks grounded in the resources framework and the actor-oriented model of transfer, implications for instruction are provided with suggestions for how RCDs may be presented to assist students in recognizing the critical information encoded in these diagrams.


Author(s):  
Takahiro Naito ◽  
Tatsuya Shinagawa ◽  
Takeshi Nishimoto ◽  
Kazuhiro Takanabe

Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document