scholarly journals A feasible approach for automatically differentiable unitary coupled-cluster on quantum computers

2021 ◽  
Author(s):  
Jakob S. Kottmann ◽  
Abhinav Anand ◽  
Alán Aspuru-Guzik

We develop computationally affordable and encoding independent gradient evaluation procedures for unitary coupled-cluster type operators, applicable on quantum computers.

1988 ◽  
Vol 53 (9) ◽  
pp. 1919-1942 ◽  
Author(s):  
Josef Paldus ◽  
Paul E. S. Wormer ◽  
Marc Benard

The performance of various variational and non-variational approaches to the many-electron correlation problem is examined for a simple four-electron model system consisting of two stretched hydrogen molecules in trapezoidal, rectangular and linear configurations, in which the degree of quasi-degeneracy can be continuously varied from a non-degenerate to an almost degenerate situation. In contrast to an earlier work (K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243 (1980)) we employ a double-zeta plus polarization basis and examine both single reference and multireference configuration interaction and coupled-cluster-type approaches. The performance of various Davidson-type corrections is also investigated.


2020 ◽  
Vol 16 (7) ◽  
pp. 4213-4225 ◽  
Author(s):  
Balázs Kozma ◽  
Attila Tajti ◽  
Baptiste Demoulin ◽  
Róbert Izsák ◽  
Marcel Nooijen ◽  
...  

2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040049
Author(s):  
Luogen Xu ◽  
J. T. Lee ◽  
J. K. Freericks

The variational quantum eigensolver has been proposed as a low-depth quantum circuit that can be employed to examine strongly correlated systems on today’s noisy intermediate-scale quantum computers. We examine details associated with the factorized form of the unitary coupled-cluster variant of this algorithm. We apply it to a simple strongly correlated condensed-matter system with nontrivial behavior — the four-site Hubbard model at half-filling. This work show some of the subtle issues one needs to take into account when applying this algorithm in practice, especially to condensed-matter systems.


2021 ◽  
Author(s):  
Matthew Otten ◽  
Matthew Hermes ◽  
Riddhish Pandharkar ◽  
Yuri Alexeev ◽  
Stephen Gray ◽  
...  

Quantum chemistry calculations of large, strongly correlated systems are typically limited by the computation cost that scales exponentially with the size of the system. Quantum algorithms, designed specifically for quantum computers, can alleviate this, but the resources required are still too large for today’s quantum devices. Here we present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation (QPE) and variational unitary coupled cluster singles and doubles (UCCSD) to compute their ground state energy. Our algorithm, termed “local active space unitary coupled cluster” (LAS-UCC), scales linearly with system size for certain geometries, providing a polynomial reduction in the total number of gates compared with QPE, while providing accuracy above that of the variational quantum eigensolver using the UCCSD ansatz and also above that of the classical local active space self-consistent field. The accuracy of LAS-UCC is demonstrated by dissociating (H2)2 into two H2 molecules and by breaking the two double bonds in trans-butadiene and resources estimates are provided for linear chains of up to 20 H2 molecules.


1976 ◽  
Vol 7 (4) ◽  
pp. 236-241 ◽  
Author(s):  
Marisue Pickering ◽  
William R. Dopheide

This report deals with an effort to begin the process of effectively identifying children in rural areas with speech and language problems using existing school personnel. A two-day competency-based workshop for the purpose of training aides to conduct a large-scale screening of speech and language problems in elementary-school-age children is described. Training strategies, implementation, and evaluation procedures are discussed.


1998 ◽  
Vol 94 (1) ◽  
pp. 181-187 ◽  
Author(s):  
EPHRAIM ELIAV ◽  
UZI KALDOR ◽  
YASUYUKI ISHIKAWA

Sign in / Sign up

Export Citation Format

Share Document