scholarly journals Active colloids orbiting giant vesicles

Soft Matter ◽  
2021 ◽  
Vol 17 (16) ◽  
pp. 4275-4281
Author(s):  
Vaibhav Sharma ◽  
Elise Azar ◽  
Andre P. Schroder ◽  
Carlos M. Marques ◽  
Antonio Stocco

A self-propelled Janus colloid performs a persistent orbital motion around a giant unilamellar vesicle, even when the vesicle size is comparable to the particle size.

Nanoscale ◽  
2018 ◽  
Vol 10 (14) ◽  
pp. 6445-6458 ◽  
Author(s):  
Qingfen Yu ◽  
Sameh Othman ◽  
Sabyasachi Dasgupta ◽  
Thorsten Auth ◽  
Gerhard Gompper

Wrapping of nanoparticles that enter and exit vesicles depends on several important parameters, such as particle size and shape, vesicle size and reduced volume, and membrane spontaneous curvature. This implies complex wrapping behavior where particle wrapping transitions and vesicle shape transitions are intimately coupled.


2012 ◽  
Vol 9 (2) ◽  
pp. 729-738
Author(s):  
Yin Yin Teo ◽  
Misni Misran ◽  
Kah Hin Low

The preparation of vesicle from a mixture of linolenic acid and 1,2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy-(polyethylene glycol) -2000] (DPPE-PEG2000) has been successfully carried out by using dry lipid hydration method. The effect of pH on particle size, zeta potential, encapsulation efficiency and critical vesiculation concentration (CVC) of the prepared vesicle suspensions in aqueous were studied. Macroscopic stability of the vesicles was also evaluated through their particle size and zeta potential for a period of 30 days. We found that CVC vary according to the pH, with higher pH of the bulk solution, CVC is higher. Vesicles formed at pH 8.5 were the most stable suspension throughout a period of 30 days compared to those at pH 7.5 and pH 9.0. Addition of DPPE-PEG2000 into the preparation of vesicle at pH 8.5 caused a reduction of the vesicle size to the scale of nanometer which is an advantage to their application. On the other hand, encapsulation of calcein and vitamin E were carried out. Certain amount of these compounds could be successfully loaded into the resulting liposomes under this experimental condition.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document