Asymmetric organic semiconductors for high performance single crystalline field-effect transistors with low activation energy

2020 ◽  
Vol 8 (18) ◽  
pp. 6006-6012 ◽  
Author(s):  
Fei Qiu ◽  
Yicai Dong ◽  
Jie Liu ◽  
Yanan Sun ◽  
Hua Geng ◽  
...  

We synthesized three asymmetric anthracene derivatives, in which 2-phvA shows a high field-effect mobility of 10 cm2 V−1 s−1. This work demonstrates the potential advantages of asymmetric structures for high-performance organic semiconductors.

2016 ◽  
Vol 27 (8) ◽  
pp. 1330-1338 ◽  
Author(s):  
Yong-Gang Zhen ◽  
Huan-Li Dong ◽  
Lang Jiang ◽  
Wen-Ping Hu

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


2018 ◽  
Vol 42 (19) ◽  
pp. 16384-16384
Author(s):  
Qian Liu ◽  
Huabin Sun ◽  
Chula Blaikie ◽  
Chiara Caporale ◽  
Sergei Manzhos ◽  
...  

Correction for ‘Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors’ by Qian Liu et al., New J. Chem., 2018, 42, 12374–12385.


2015 ◽  
Vol 3 (31) ◽  
pp. 8024-8029 ◽  
Author(s):  
Zhaoguang Li ◽  
Ji Zhang ◽  
Kai Zhang ◽  
Weifeng Zhang ◽  
Lei Guo ◽  
...  

Naphtho[2,1-b:3,4-b′]bisthieno[3,2-b][1]benzothiophene derivatives exhibiting a hole mobility of up to 0.25 cm2 V−1 s−1 show promise as useful building blocks to construct next-generation high performance organic semiconductors.


MRS Advances ◽  
2016 ◽  
Vol 1 (38) ◽  
pp. 2653-2658
Author(s):  
S. Inoue ◽  
H. Minemawari ◽  
J. Tsutsumi ◽  
T. Hamai ◽  
S. Arai ◽  
...  

ABSTRACTHere we discuss requirements for high performance and solution processable organic semiconductors, by presenting a systematic investigation of 7-alkyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophenes (Ph-BTBT-Cn’s). We found that the solubility and thermal properties of Ph-BTBT-Cn’s depend systematically on the substituted alkyl-chain length n. The observed features are well understood in terms of the change of molecular packing motif with n: The compounds with n ≤ 4 do not form independent alkyl chain layers, whereas those with n ≥ 5 form isolated alkyl chain layers. The latter compounds afford a series of isomorphous bilayer-type crystal structures that form two-dimensional carrier transport layers within the crystals. We also show that the Ph-BTBT-C10 afford high performance single-crystalline field-effect transistors the mobility of which reaches as high as 15.9 cm2/Vs. These results demonstrate a crucial role of the substituted alkyl chain length for obtaining high performance organic semiconductors and field-effect transistors.


Sign in / Sign up

Export Citation Format

Share Document