First-principles prediction of ferroelasticity tuned anisotropic auxeticity and carrier mobility in two-dimensional AgO

Author(s):  
Lei Zhang ◽  
Cheng Tang ◽  
Chunmei Zhang ◽  
Yuantong Gu ◽  
Aijun Du

A novel AgO monolayer is highlighted with ferroelasticity tuned anisotropic mechanical and electronic properties.

2019 ◽  
Vol 58 (SC) ◽  
pp. SCCB35 ◽  
Author(s):  
Tomoe Yayama ◽  
Anh Khoa Augustin Lu ◽  
Tetsuya Morishita ◽  
Takeshi Nakanishi

2021 ◽  
Author(s):  
Thi Nga Do ◽  
Son-Tung Nguyen ◽  
Khang Pham

In this work, by means of the first-principles calculations, we investigate the structural and electronic properties of a two-dimensional ZnGeN2 monolayer as well as the effects of strains and electric...


2021 ◽  
Author(s):  
Wenjin Yin ◽  
Yu Liu ◽  
Bo Wen ◽  
Xi-Bo Li ◽  
Yi-Feng Chai ◽  
...  

Charge-carrier mobility is a determining factor for the transport properties of semiconductor materials, and strongly related to the opto-electronics performance of nanoscale devices. Here, we investigate the electronic properties and...


2020 ◽  
Vol 22 (21) ◽  
pp. 12260-12266
Author(s):  
Xin-Yue Lin ◽  
Fan-Shun Meng ◽  
Qi-Chao Liu ◽  
Qi Xue ◽  
Hui Zhang

A series of two-dimensional (2D) single-layer binary group VA–VA crystals, where VA represents P, As, Sb and Bi, are explored by the first-principles calculations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 446
Author(s):  
Mahdi Faghihnasiri ◽  
Aidin Ahmadi ◽  
Samaneh Alvankar Golpayegan ◽  
Saeideh Garosi Sharifabadi ◽  
Ali Ramazani

We utilize first principles calculations to investigate the mechanical properties and strain-dependent electronic band structure of the hexagonal phase of two dimensional (2D) HfS2. We apply three different deformation modes within −10% to 30% range of two uniaxial (D1, D2) and one biaxial (D3) strains along x, y, and x-y directions, respectively. The harmonic regions are identified in each deformation mode. The ultimate stress for D1, D2, and D3 deformations is obtained as 0.037, 0.038 and 0.044 (eV/Ang3), respectively. Additionally, the ultimate strain for D1, D2, and D3 deformation is obtained as 17.2, 17.51, and 21.17 (eV/Ang3), respectively. In the next step, we determine the second-, third-, and fourth-order elastic constants and the electronic properties of both unstrained and strained HfS2 monolayers are investigated. Our findings reveal that the unstrained HfS2 monolayer is a semiconductor with an indirect bandgap of 1.12 eV. We then tune the bandgap of HfS2 with strain engineering. Our findings reveal how to tune and control the electronic properties of HfS2 monolayer with strain engineering, and make it a potential candidate for a wide range of applications including photovoltaics, electronics and optoelectronics.


RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 952-957 ◽  
Author(s):  
Konstantina Iordanidou ◽  
Michel Houssa ◽  
Clas Persson

Using first principles calculations based on density functional theory the impact of hole doping on the magnetic and electronic properties of two dimensional PtS2 is studied.


Vacuum ◽  
2020 ◽  
Vol 174 ◽  
pp. 109176 ◽  
Author(s):  
Hongye Yang ◽  
Yinan Li ◽  
Zechen Yang ◽  
Xiaoqin Shi ◽  
Ziwei Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document