scholarly journals Efficient CRISPR-Cas9-based knockdown of RUNX2 to induce chondrogenic differentiation of stem cells

2022 ◽  
Author(s):  
Hye Jin Kim ◽  
Jong Min Park ◽  
Sujin Lee ◽  
Hui Bang Cho ◽  
Ji-In Park ◽  
...  

Effective knockdown of the RUNX2 gene by CRISPR-Cas9-based nanoparticles (CASP-NPs) is even more effective in chondrogenic differentiation.

2021 ◽  
Vol 22 (13) ◽  
pp. 7058
Author(s):  
Thorsten Kirsch ◽  
Fenglin Zhang ◽  
Olivia Braender-Carr ◽  
Mary K. Cowman

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


2020 ◽  
Vol 134 ◽  
pp. 107536 ◽  
Author(s):  
Juan Jairo Vaca-González ◽  
Sandra Clara-Trujillo ◽  
María Guillot-Ferriols ◽  
Joaquín Ródenas-Rochina ◽  
María J. Sanchis ◽  
...  

2013 ◽  
Vol 114 (5) ◽  
pp. 647-655 ◽  
Author(s):  
Chung-Hwan Chen ◽  
Yi-Shan Lin ◽  
Yin-Chih Fu ◽  
Chih-Kuang Wang ◽  
Shun-Cheng Wu ◽  
...  

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document