Identification of beryllium fluoride complexes in mechanically distorted gels using quadrupolar split 9Be NMR spectra resolved withsolution-state selective cross-polarization

Author(s):  
Konstantin Romanenko ◽  
Stuart James Elliott ◽  
Aleksandr A. Shubin ◽  
Philip W. Kuchel

The uniformly anisotropic media afforded by hydrogels are being increasingly exploited in analytical (structural) nuclear magnetic The uniformly anisotropic media afforded by hydrogels are being increasingly exploited in analytical (structure...

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S160-S160
Author(s):  
S Notararigo ◽  
M Martin-Pastor ◽  
J E Dominguez Munoz ◽  
M Barreiro-de Acosta

Abstract Background The deregulation of immune system cell response implies loss of T-cell apoptosis, high rate of proinflammatory cytokines production and subsequent exacerbate activation of TNF-α pathway. The use of biologic antibody decrease inflammation rate and symptoms, but it remains unclear if it has a direct effect on the pathways activation/inactivation on peripheral blood mononuclear cells (PBMCs). The aim of this study is evaluate the role of nuclear magnetic resonance spectroscopy (NMR) applied to the metabolomic study of serum samples isolated from fresh blood from inflammatory bowel disease (IBD) patients under IFX treatment to understand the activated/inactivated pathways of PBMCs. Methods A case–control study was performed. Inclusion criteria were IBD patients under IFX treatment. Blood samples were obtained in Crohn’s disease (CD) and ulcerative colitis (UC) patients before IFX and in healthy controls (CTRL). CD patients were divided into subgroups according to the gut affected, in Ileocolic (IC), ileum and colon. NMR samples of the serum were collected and measured according to Standard Operation Procedures. Three types of NMR spectra were measured for each serum sample (1Hnoepresat, 1Hcpmgpresat and 1HDfilterpresat). The signal in each NMR spectrum was integrated in a series of equidistant little portion of the spectrum called buckets of a constant width of 0.04 ppm, covering the complete 1H NMR spectral window from −5 to 14 ppm. Buckets in regions depleted from signal at the two extremes of the spectrum were discarded as well as those in the proximity of the water peak at ca. 4.7 ppm which was affected by the presaturation. The vectors corresponding to a number of samples of two or more groups can be rapidly analysed using Multivariant Statistical Analysis methods. Results Twenty-two IBD patients (12 CD and nine UC) were included, 10 CTRL were also included. The metabolomic analyses of the NMR spectra of the serum of the different patients and control groups by the fingerprinting and targeting profiling strategies provided OPLS-DA statistical models (Figure 1) that permitted the successful classification of certain groups of samples which are summarised in Table 1. Conclusion The results of this pilot NMR metabolomic study of serum samples of IBD found a series of spectral fingerprints that are able to discriminate between groups of patients CTRL and CD, which underlines its potential use for the diagnosis of the disease.


1983 ◽  
Vol 61 (8) ◽  
pp. 1795-1799 ◽  
Author(s):  
Philip A. W. Dean

The previously reported 1:1 complexes formed in MeNO2, between M(SbF6)2 (M = Sn or Pb) and Ph2P(CH2)2PPh2, PhP[(CH2)2PPh2]2, MeC(CH2PPh2)3, P[(CH2)2PPh2]3, and [Formula: see text] have been studied by metal (119Sn or 207Pb) nmr. The metal chemical shifts span the comparatively narrow range of −586 to −792 ppm and 60 to −269 ppm, relative to the resonance of MMe4, for 119Sn and 207Pb nmr, respectively. The implications of these data regarding the denticity of the ligand in M(P[(CH2)2PPh2]3)2+ are discussed, and a comparison with the metal nmr spectra of related stannous and plumbous complexes is made.


2002 ◽  
Vol 116 (23) ◽  
pp. 10041-10050 ◽  
Author(s):  
Thomas R. Eykyn ◽  
Fabien Ferrage ◽  
Geoffrey Bodenhausen

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 916 ◽  
Author(s):  
Wu Lan ◽  
Fengxia Yue ◽  
Jorge Rencoret ◽  
José del Río ◽  
Wout Boerjan ◽  
...  

Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one] is a flavone that has been found to be incorporated in grass lignin polymers via 4′–O–β coupling. Herein, we investigated the tricin-lignin structure using nuclear magnetic resonance (NMR) methods by comparing the 1H–13C heteronuclear correlation (HSQC) NMR spectra of the isolated lignin with a series of dimeric and trimeric tricin-4′–O–β-ether model compounds. Results showed that the tricin moiety significantly affects the chemical shift of the Cβ/Hβ of 4′–O–β unit, producing peaks at around δC/δH 82.5–83.5/4.15–4.45, that differ from the Cβ/Hβ correlations from normal 4–O–β units formed solely by monolignols, and that have to date been unassigned.


2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


We consider applications of the best L1 piecewise monotonic approximation method for the peak estimation of three sets of up to 2500 measurements of Raman, Infrared and Nuclear Magnetic Resonance (NMR)spectra. Peak estimation is an inherent problem of spectroscopy. The location of peaks and their intensities arethe signature of a sample of an organic or an inorganic compound. The diversity and the complexity of our measurements makes it a difficult test of the effectiveness of the method. We find that the method identifies efficientlypeaks and we compare to the results obtained by the analogous least squares calculations. These results havemany similarities and occasionally considerable differences due to both properties of the norms employed in theoptimization calculations and nature of the spectra. Our results may be helpful to subject analysts as part of theinformation on which decisions will be made for estimating peaks in sequences of spectra and to the developmentof new algorithms that are particularly suitable for peak estimation calculations.


Sign in / Sign up

Export Citation Format

Share Document