scholarly journals P052 Nuclear magnetic resonance metabolomic profiling of IBD patients under anti-TNF treatment. Are the pathways network deregulated?

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S160-S160
Author(s):  
S Notararigo ◽  
M Martin-Pastor ◽  
J E Dominguez Munoz ◽  
M Barreiro-de Acosta

Abstract Background The deregulation of immune system cell response implies loss of T-cell apoptosis, high rate of proinflammatory cytokines production and subsequent exacerbate activation of TNF-α pathway. The use of biologic antibody decrease inflammation rate and symptoms, but it remains unclear if it has a direct effect on the pathways activation/inactivation on peripheral blood mononuclear cells (PBMCs). The aim of this study is evaluate the role of nuclear magnetic resonance spectroscopy (NMR) applied to the metabolomic study of serum samples isolated from fresh blood from inflammatory bowel disease (IBD) patients under IFX treatment to understand the activated/inactivated pathways of PBMCs. Methods A case–control study was performed. Inclusion criteria were IBD patients under IFX treatment. Blood samples were obtained in Crohn’s disease (CD) and ulcerative colitis (UC) patients before IFX and in healthy controls (CTRL). CD patients were divided into subgroups according to the gut affected, in Ileocolic (IC), ileum and colon. NMR samples of the serum were collected and measured according to Standard Operation Procedures. Three types of NMR spectra were measured for each serum sample (1Hnoepresat, 1Hcpmgpresat and 1HDfilterpresat). The signal in each NMR spectrum was integrated in a series of equidistant little portion of the spectrum called buckets of a constant width of 0.04 ppm, covering the complete 1H NMR spectral window from −5 to 14 ppm. Buckets in regions depleted from signal at the two extremes of the spectrum were discarded as well as those in the proximity of the water peak at ca. 4.7 ppm which was affected by the presaturation. The vectors corresponding to a number of samples of two or more groups can be rapidly analysed using Multivariant Statistical Analysis methods. Results Twenty-two IBD patients (12 CD and nine UC) were included, 10 CTRL were also included. The metabolomic analyses of the NMR spectra of the serum of the different patients and control groups by the fingerprinting and targeting profiling strategies provided OPLS-DA statistical models (Figure 1) that permitted the successful classification of certain groups of samples which are summarised in Table 1. Conclusion The results of this pilot NMR metabolomic study of serum samples of IBD found a series of spectral fingerprints that are able to discriminate between groups of patients CTRL and CD, which underlines its potential use for the diagnosis of the disease.

2020 ◽  
Vol 100 (4) ◽  
pp. 60-74
Author(s):  
А.А. Bakibaev ◽  
◽  
М.Zh. Sadvakassova ◽  
V.S. Malkov ◽  
R.Sh. Еrkasov ◽  
...  

A wide variety of acyclic ureas comprising alkyl, arylalkyl, acyl, and aryl functional groups are investigated by nuclear magnetic resonance spectroscopy. In general, spectral characteristics of more than 130 substances based on acyclic ureas dissolved in deuterated dimethyl sulfoxide at room temperature are studied. The re-sults obtained based on the studies of 1H and 13C NMR spectra of urea and its N-alkyl-, N-arylalkyl-, N-aryl- and 1,3-diaryl derivatives are presented, and the effect of these functional groups on the chemical shifts in carbonyl and amide moieties in acyclic urea derivatives is discussed. An introduction of any type of substitu-ent (electron-withdrawing or electron-donating) into urea molecule is stated to result in a strong upfield shift in 13C NMR spectra relatively to unsubstituted urea. A strong sensitivity of NH protons to the presence of acyl and aryl groups in nuclear magnetic resonance spectra is pointed out. In some cases, qualitative depend-encies between the chemical shifts in the NMR spectra and the structure of the studied acyclic ureas are re-vealed. A summary of the results on chemical shifts in the NMR spectra of the investigated substances allows determining the ranges of chemical shift variations of the key protons and carbon atoms in acyclic ureas. The literature describing the synthesis procedures are provided. The results obtained significantly expand the methods of reliable identification of biologically active acyclic ureas and their metabolites that makes it promising to use NMR spectroscopy both in biochemistry and in clinical practice.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 980-983 ◽  
Author(s):  
V.M. Russo ◽  
J. Williamson ◽  
K. Roberts ◽  
J.R. Wright ◽  
N. Maness

Sugars move through stalks to be deposited in kernels in sweet corn (Zea mays L.). Concentrations of sugars in stalks change as plants pass through developmental stages. To follow such changes, carbon-13 nuclear magnetic resonance spectroscopy (C-nmr), a technology that can measure concentrations of sugars in tissues, was compared with analysis by high-performance liquid chromatography (HPLC). A shrunken-2 hybrid (cv. Illini Gold), was monitored from mid-whorl to fresh-market maturity (R3). Internodes near the base of the stalk, just below the ear, and between an ear and the tassel were sampled at each developmental stage. Chemical shifts in C-nmr spectra were measured in parts per million hertz (ppm) down-field relative to tetramethyl silane. Through silk emergence (R1) C-nmr spectra were similar regardless of internode, having line positions between 60 and 105 ppm. Unique lines for glucose, fructose, and sucrose were at 96, 98, and 104 ppm, respectively, and mole fractions were similar to those determined by HPLC. The highest concentrations were recorded at R1 for sucrose (26.1 mg·mL-1), from tasseling (VT) through R3 for fructose (avg. 30.4 mg·mL-1), and from VT to R1 for glucose (avg. 32 mg·mL-1). Carbon-13 nuclear magnetic resonance spectroscopy can be used, with minimal sample handling, to monitor sugar concentrations in sweet corn.


1983 ◽  
Vol 61 (12) ◽  
pp. 1260-1264 ◽  
Author(s):  
G. W. Buchanan ◽  
K. B. Storey

Natural abundance carbon-13 nuclear magnetic resonance (NMR) spectra of intact, acclimated Eurosta solidaginis larvae have been obtained. The spectra show peaks assignable to lipid components and the presence of one major type of monounsaturated fatty acid. Chloroform-soluble extracts of whole larvae support this. The major nonlipid carbon components were the two cryoprotectant polyols glycerol and sorbitol. Carbon-13 NMR is a useful tool for analysis of cryoprotectant molecules in whole, living cold acclimated freezing tolerant insects.


2006 ◽  
Vol 50 (12) ◽  
pp. 4018-4026 ◽  
Author(s):  
Muireann Coen ◽  
Jennifer Bodkin ◽  
Damla Power ◽  
William A. Bubb ◽  
Uwe Himmelreich ◽  
...  

ABSTRACT Drug-induced inhibition of fungal growth is used in the diagnostic laboratory to predict therapeutic efficacy but is relatively slow, and determination of endpoints can be problematic. Nuclear magnetic resonance (NMR) spectroscopy identifies the metabolic complement of microorganisms while monitoring utilization of constituents of the incubation medium. This technique may provide a rapid and objective indicator of antifungal effects. We evaluated the effects of caspofungin, amphotericin B (AMB), and voriconazole on metabolic profiles of yeast species cultured in RPMI-2% glucose-morpholinepropanesulfonic acid buffer in microtiter plates in a proof-of-principle study. 1H NMR spectra were obtained using Bruker NMR spectrometers at 1H frequencies of 600 and 360 MHz. Metabolites were identified by two-dimensional correlation NMR spectra, and relative peak integrals were calculated from one-dimensional 1H NMR spectra. MICs were determined by a modification of the Clinical and Laboratory Standards Institute broth microdilution method M27-A. Utilization of glucose and branched-chain and aromatic amino acid substrates was accompanied by fungal production of acetate, acetaldehyde, ethanol, formate, fumarate, glycerol, lactate, pyruvate, and succinate. Clear-cut metabolic endpoints indicating a greater than 50% reduction in substrate utilization and fungal metabolite production which correlated with MICs were noted at 16 and 24 h for all three drugs. At 8 h, reductions of greater than 50% for selected metabolites were noted for caspofungin and AMB. Direct NMR-based observation of metabolic alterations in yeast cultures reveals changes in key metabolic pathways and should be evaluated formally as a rapid technique for determining susceptibility to antifungal drugs.


2006 ◽  
Vol 18 (5) ◽  
pp. 559 ◽  
Author(s):  
Gordon E. Sarty ◽  
Edward J. Kendall ◽  
Gregg P. Adams ◽  
Roger A. Pierson

The objective of the study was to determine if nuclear magnetic resonance (NMR) spectral features of ovarian follicular fluid were correlated with the physiological status of follicles so that we could assess the feasibility of using NMR spectroscopy during assisted reproduction therapy. Thirty-five sexually mature, nullparious heifers were monitored by transrectal ultrasonography to assess their follicle wave status during the oestrous cycle. Ovariectomies were performed on Day 3 of wave 1 (D3W1, n = 10), Day 6 of wave 1 (D6W1, n = 9), Day 1 of wave 2 (D1W2, n = 9), or in the immediate preovulatory period of at least 17 days after ovulation (D≥17, n = 9). Follicle status was determined to be dominant or subordinate. Follicular fluid was extracted from the follicles and NMR spectra were collected. Principal components were extracted from ratios of line amplitudes and tested for effects of follicle status (dominant v. subordinate) and cycle time point (D1W3, D1W6, D1W2 and D≥17) using multivariate analysis of variance. For most line ratio combinations, main effects of status, time point and their interaction were found (P < 0.05). We concluded that NMR spectra may be used for the determination of ovarian follicle physiological status.


1988 ◽  
Vol 34 (3) ◽  
pp. 505-511 ◽  
Author(s):  
P Wilding ◽  
M B Senior ◽  
T Inubushi ◽  
M L Ludwick

Abstract Water-suppressed proton nuclear magnetic resonance spectra were generated (by using 360 and 500 MHz systems) from human plasma and serum samples taken from 35 apparently healthy individuals, 52 patients with overt malignancies, and 37 patients with hypertriglyceridemia (triglycerides greater than 200 mg/dL or 2.26 mmol/L). The line widths from the lipoprotein-lipid methylene and methyl resonances at approximately 1.3 and 0.9 ppm were averaged by the method of Fossel et al. (N Engl J Med 1986;315:1369-76), but, contrary to their findings, we were unable to distinguish normal individuals from those with malignant tumors (e.g., mean +/- SD line width at 360 MHz: normal group = 32.9 +/- 3.6 Hz, malignant group = 28.3 +/- 4.9 Hz). The average line-width measurements (y), however, varied with the triglyceride content (x, mg/dL) of the plasma or serum as follows (logarithmic transformation of the data determined at 360 MHz and regression analysis): y = 110 (x-0.27). Data from both nonmalignant and malignant specimens fit this equation, the coefficient of correlation being -0.91. These findings suggest that considerable caution should be used in interpreting water-suppressed proton NMR spectra for cancer detection.


2016 ◽  
Vol 60 (5) ◽  
pp. 419-428
Author(s):  
Gareth L. Nealon ◽  
Mark J. Howard

Using nuclear magnetic resonance (NMR) spectroscopy in the study of metabolism has been immensely popular in medical- and health-related research but has yet to be widely applied to more fundamental biological problems. This review provides some NMR background relevant to metabolism, describes why 1H NMR spectra are complex as well as introducing relevant terminology and definitions. The applications and practical considerations of NMR metabolic profiling and 13C NMR-based flux analyses are discussed together with the elegant ‘enzyme trap’ approach for identifying novel metabolic pathway intermediates. The importance of sample preparation and data analysis are also described and explained with reference to data precision and multivariate analysis to introduce researchers unfamiliar with NMR and metabolism to consider this technique for their research interests. Finally, a brief glance into the future suggests NMR-based metabolism has room to expand in the 21st century through new isotope labels, and NMR technologies and methodologies.


2003 ◽  
Vol 69 (8) ◽  
pp. 4566-4574 ◽  
Author(s):  
Uwe Himmelreich ◽  
Ray L. Somorjai ◽  
Brion Dolenko ◽  
Ok Cha Lee ◽  
Heide-Marie Daniel ◽  
...  

ABSTRACT Nuclear magnetic resonance (NMR) spectra were acquired from suspensions of clinically important yeast species of the genus Candida to characterize the relationship between metabolite profiles and species identification. Major metabolites were identified by using two-dimensional correlation NMR spectroscopy. One-dimensional proton NMR spectra were analyzed by using a staged statistical classification strategy. Analysis of NMR spectra from 442 isolates of Candida albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis resulted in rapid, accurate identification when compared with conventional and DNA-based identification. Spectral regions used for the classification of the five yeast species revealed species-specific differences in relative amounts of lipids, trehalose, polyols, and other metabolites. Isolates of C. parapsilosis and C. glabrata with unusual PCR fingerprinting patterns also generated atypical NMR spectra, suggesting the possibility of intraspecies discontinuity. We conclude that NMR spectroscopy combined with a statistical classification strategy is a rapid, nondestructive, and potentially valuable method for identification and chemotaxonomic characterization that may be broadly applicable to fungi and other microorganisms.


Sign in / Sign up

Export Citation Format

Share Document