Effects of electrostatic interactions on global folding and local conformational dynamics of a multidomain Y-family DNA polymerase

Author(s):  
Qing-Miao Nie ◽  
Li-Zhen Sun ◽  
Hai-Bin Li ◽  
Xiakun Chu ◽  
Jin Wang

Electrostatic interactions can facilitate the folding of the multidomain DNA polymerase Dpo4 by refining the folding order of the individual domain and promote the functional conformational dynamics of Dpo4 during the DNA-binding recognition.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiakun Chu ◽  
Zucai Suo ◽  
Jin Wang

The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to ‘U-shaped’ DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4–DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.


PLoS Biology ◽  
2009 ◽  
Vol 7 (10) ◽  
pp. e1000225 ◽  
Author(s):  
Cuiling Xu ◽  
Brian A. Maxwell ◽  
Jessica A. Brown ◽  
Likui Zhang ◽  
Zucai Suo

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Wu ◽  
Alexandra de Paz ◽  
Bradley M. Zamft ◽  
Adam H. Marblestone ◽  
Edward S. Boyden ◽  
...  

2018 ◽  
Author(s):  
Nilisha Pokhrel ◽  
Colleen C. Caldwell ◽  
Elliot I. Corless ◽  
Emma A. Tillison ◽  
Joseph Tibbs ◽  
...  

AbstractReplication protein A (RPA) coordinates important DNA metabolic events by stabilizing single-strand DNA (ssDNA) intermediates, activating the DNA damage response, and handing off ssDNA to appropriate downstream players. Six DNA binding domains (DBDs) in RPA promote high affinity binding to ssDNA, but also allow RPA displacement by lower affinity proteins. We have made fluorescent versions of RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA, while RPA as a whole remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. This demonstrates how RPA interacting proteins, with lower ssDNA binding affinity, can access the occluded ssDNA and remodel individual DBDs to replace RPA.One Sentence SummaryThe choreography of binding and rearrangement of the individual domains of RPA during homologous recombination is revealed.


2013 ◽  
Vol 42 (4) ◽  
pp. 2555-2563 ◽  
Author(s):  
Alfonso Brenlla ◽  
Radoslaw P. Markiewicz ◽  
David Rueda ◽  
Louis J. Romano

Abstract Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.


2012 ◽  
Vol 287 (16) ◽  
pp. 13040-13047 ◽  
Author(s):  
Brian A. Maxwell ◽  
Cuiling Xu ◽  
Zucai Suo

2018 ◽  
Author(s):  
Timothy D. Craggs ◽  
Marko Sustarsic ◽  
Anne Plochowietz ◽  
Majid Mosayebi ◽  
Hendrik Kaju ◽  
...  

AbstractDNA-binding proteins utilise different recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarsegrained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy (<ΔFRET> = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG < 4 kT); such conformations were much less accessible to nicked (> 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.Significance StatementMost genetic processes, including DNA replication, repair and transcription, rely on DNA-binding proteins locating specific sites on DNA; some sites contain a specific sequence, whereas others present a specific structure. While sequence-specific recognition has a clear physical basis, structure-specific recognition mechanisms remain obscure. Here, we use single-molecule FRET and computer simulations to show that the conformational dynamics of an important repair intermediate (1nt-gapped DNA) act as central recognition signals for structure-specific binding by DNA polymerase I (Pol). Our conclusion is strongly supported by a novel solution structure of the Pol-DNA complex wherein the gapped-DNA is significantly bent. Our iterative approach combining precise single-molecule measurements with molecular modelling is general and can elucidate the structure and dynamics for many large biomachines.


2019 ◽  
Vol 47 (20) ◽  
pp. 10788-10800 ◽  
Author(s):  
Timothy D Craggs ◽  
Marko Sustarsic ◽  
Anne Plochowietz ◽  
Majid Mosayebi ◽  
Hendrik Kaju ◽  
...  

Abstract DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets; some proteins recognise specific DNA sequences, while others interact with specific DNA structures. While sequence-specific DNA binding has been studied extensively, structure-specific recognition mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I Klenow Fragment (Pol) substrates both alone and in DNA–Pol complexes. Using a docking approach based on a network of 73 distances collected using single-molecule FRET, we determined a novel solution structure of the single-nucleotide-gapped DNA–Pol binary complex. The structure resembled existing crystal structures with regards to the downstream primer-template DNA substrate, and revealed a previously unobserved sharp bend (∼120°) in the DNA substrate; this pronounced bend was present in living cells. MD simulations and single-molecule assays also revealed that 4–5 nt of downstream gap-proximal DNA are unwound in the binary complex. Further, experiments and coarse-grained modelling showed the substrate alone frequently adopts bent conformations with 1–2 nt fraying around the gap, suggesting a mechanism wherein Pol recognises a pre-bent, partially-melted conformation of gapped DNA. We propose a general mechanism for substrate recognition by structure-specific enzymes driven by protein sensing of the conformational dynamics of their DNA substrates.


Sign in / Sign up

Export Citation Format

Share Document