peri-Acenoacene Molecules: Tuning of the Singlet and Triplet Excitation Energies by Modifying their Radical Character

Author(s):  
Alicia Omist ◽  
Gaetano Ricci ◽  
Amel Derradji ◽  
Ángel J. José Pérez-Jiménez ◽  
Emilio San Fabián ◽  
...  

The energy difference between singlet and triplet excitons, or ΔEST, is a key magnitude for novel light-emission mechanisms (i.e., TADF or Thermally Activated Delayed Fluorescence) or other photoactivated processes. We...

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1006 ◽  
Author(s):  
Javier Sanz-Rodrigo ◽  
Yoann Olivier ◽  
Juan-Carlos Sancho-García

In this paper we describe the mechanism of light emission through thermally activated delayed fluorescence (TADF)—a process able to ideally achieve 100% quantum efficiencies upon fully harvesting the energy of triplet excitons, and thus minimizing the energy loss of common (i.e., fluorescence and phosphorescence) luminescence processes. If successful, this technology could be exploited for the manufacture of more efficient organic light-emitting diodes (OLEDs) made of only light elements for multiple daily applications, thus contributing to the rise of a sustainable electronic industry and energy savings worldwide. Computational and theoretical studies have fostered the design of these all-organic molecular emitters by disclosing helpful structure–property relationships and/or analyzing the physical origin of this mechanism. However, as the field advances further, some limitations have also appeared, particularly affecting TD-DFT calculations, which have prompted the use of a variety of methods at the molecular scale in recent years. Herein we try to provide a guide for beginners, after summarizing the current state-of-the-art of the most employed theoretical methods focusing on the singlet–triplet energy difference, with the additional aim of motivating complementary studies revealing the stronger and weaker aspects of computational modelling for this cutting-edge technology.


Author(s):  
Yi-Mei Huang ◽  
Tse-Ying Chen ◽  
Deng-Gao Chen ◽  
Hsuan-Chi Liang ◽  
Cheng-Ham Wu ◽  
...  

35Cbz4BzCN, a novel universal host with long triplet lifetime, has been developed. The triplet excitons in 35Cbz4BzCN can be effectively harvested by phosphorescence and thermally activated delayed fluorescence emitters. In...


2019 ◽  
Vol 43 (15) ◽  
pp. 6032-6039
Author(s):  
Songyan Feng ◽  
Xugeng Guo ◽  
Jinglai Zhang

The present results reveal that the dominant charge transfer characteristics in the S1 and T1 states produce a small energy difference between the two states, and consequently an efficient reverse intersystem crossing process and a high fluorescence efficiency.


2020 ◽  
Author(s):  
Robert Pollice ◽  
Pascal Friederich ◽  
Cyrille Lavigne ◽  
Gabriel dos Passos Gomes ◽  
Alan Aspuru-Guzik

One of the recent proposals for the design of state-of-the-art emissive materials for organic light emitting diodes (OLEDs) is the principle of thermally activated delayed fluorescence (TADF). The underlying idea is to enable facile thermal upconversion of excited state triplets, which are generated upon electron-hole recombination, to excited state singlets by minimizing the corresponding energy difference resulting in devices with up to 100% internal quantum efficiencies (IQEs). Ideal emissive materials potentially surpassing TADF emitters should have both negative singlet-triplet gaps and appreciable fluorescence rates to maximize reverse intersystem crossing (rISC) rates from excited triplets to singlets while minimizing ISC rates and triplet state occupation leading to long-term operational stability. However, molecules with negative singlet-triplet gaps are extremely rare and, to the best of our knowledge, not emissive. In this work, based on computational studies, we describe the first molecules with negative singlet-triplet gaps and considerable fluorescence rates and show that they are more common than hypothesized previously.


2021 ◽  
Author(s):  
P Rajamalli ◽  
Federica Rizzi ◽  
Wenbo Li ◽  
Michael Jinks ◽  
Abhishek Gupta ◽  
...  

We report the characterization of rotaxanes based on a carbazole–benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.


2017 ◽  
Vol 46 (3) ◽  
pp. 915-1016 ◽  
Author(s):  
Zhiyong Yang ◽  
Zhu Mao ◽  
Zongliang Xie ◽  
Yi Zhang ◽  
Siwei Liu ◽  
...  

Thermally activated delayed fluorescence: harvesting dark triplet excitons to generate bright emissive singlet excitons.


2021 ◽  
Vol 9 (39) ◽  
pp. 13935-13941
Author(s):  
Haiyang Xu ◽  
Shuzhe Li ◽  
Minyu Chen ◽  
Yachen Xu ◽  
Pengchao Zhou ◽  
...  

The polarity-dependent solvatochromic properties of a D–A structure molecule under different excitation energies are reported.


2015 ◽  
Vol 15 (10) ◽  
pp. 7819-7822 ◽  
Author(s):  
Dong Yuel Kwon ◽  
Geon Hyeong Lee ◽  
Young Sik Kim

Four novel thermally activated delayed fluorescence (TADF) materials with 9,10-dihydro-9,9- dimethylacridine (DMAC) and phenylindolo(2,3-a)carbazole (PIC) as electron donors and benzazole derivatives (BO, and BT) as electron acceptors (DMAC-BO, DMAC-BT, PIC-BO, and PIC-BT) were designed and theoretically investigated for use as a blue organic light emitting diode (OLED) emitter. Using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, we calculated the electron distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. All the dyes had a small spatial overlap between the HOMO and LUMO because of the relatively large dihedral angle between the phenyl ring and the acceptor moiety. In terms of the energy difference (ΔEST) between the S1 state and the T1 state, DMAC-BO and DMAC-BT showed the small ΔEST (0.18 eV and 0.21 eV, respectively). However, PIC-BO and PIC-BT showed the large ΔEST (0.62 eV and 0.61 eV, respectively). Among the TADF materials, we showed that DMAC-BO would have the best TADF properties in terms of small ΔEST and blue OLED emitters


2018 ◽  
Vol 6 (11) ◽  
pp. 2873-2881 ◽  
Author(s):  
Yaodong Zhao ◽  
Weigao Wang ◽  
Chen Gui ◽  
Li Fang ◽  
Xinlei Zhang ◽  
...  

Luminescent materials with aggregation-induced emission (AIE) properties exhibit high solid state emission, while thermally activated delayed fluorescence (TADF) materials can fully harvest singlet and triplet excitons to achieve efficient electroluminescence (EL).


Sign in / Sign up

Export Citation Format

Share Document