Modulation in Ru and Cu nanoparticles contents over CuAlPO-5 in synergistic enhancement in the selective reduction and oxidation of biomass-derived furan based alcohols and carbonyls

Author(s):  
Abhinav Kumar ◽  
Rajaram Bal ◽  
Rajendra Srivastava

Furfural (FAL) and 5-hydroxymethylfurfural (HMF) are important and sustainable platform chemicals. They are produced from lignocellulose biomass and attract significant attention as precursors for producing value-added chemicals and fuels. The...

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2021 ◽  
Vol 405 ◽  
pp. 126705
Author(s):  
Javier Remón ◽  
Marina Casales ◽  
Jesús Gracia ◽  
María S. Callén ◽  
José Luis Pinilla ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Huan Chen ◽  
Kun Wan ◽  
Fangjuan Zheng ◽  
Zhuo Zhang ◽  
Hongyu Zhang ◽  
...  

In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.


2017 ◽  
Vol 53 (20) ◽  
pp. 2938-2941 ◽  
Author(s):  
Xun Hu ◽  
Shengjuan Jiang ◽  
Liping Wu ◽  
Shuai Wang ◽  
Chun-Zhu Li

Via acid catalysis in dimethoxymethane/methanol, both C5 sugars and C6 sugars, derived from hemicellulose and cellulose, could be simultaneously converted into levulinic acid/ester, the platform chemicals for manufacturing value-added chemicals and biofuels.


2020 ◽  
Vol 22 (3) ◽  
pp. 828-834 ◽  
Author(s):  
Jotheeswari Kothandaraman ◽  
David J. Heldebrant

The transformation of captured CO2 into value-added chemicals to mitigate increasing CO2 concentration in the atmosphere has gained significant attention recently.


Cellulose ◽  
2018 ◽  
Vol 25 (8) ◽  
pp. 4663-4675 ◽  
Author(s):  
Qiaolong Zhai ◽  
Fanglin Li ◽  
Fei Wang ◽  
Junming Xu ◽  
Jianchun Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document