scholarly journals One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis

2017 ◽  
Vol 53 (20) ◽  
pp. 2938-2941 ◽  
Author(s):  
Xun Hu ◽  
Shengjuan Jiang ◽  
Liping Wu ◽  
Shuai Wang ◽  
Chun-Zhu Li

Via acid catalysis in dimethoxymethane/methanol, both C5 sugars and C6 sugars, derived from hemicellulose and cellulose, could be simultaneously converted into levulinic acid/ester, the platform chemicals for manufacturing value-added chemicals and biofuels.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2018 ◽  
Vol 42 (2) ◽  
pp. 1423-1430 ◽  
Author(s):  
Firdaus Parveen ◽  
Tanmoy Patra ◽  
Sreedevi Upadhyayula

The catalytic conversion of biomass-derived carbohydrates to value-added chemicals, such as 5-hydroxymethylfurfural, levulinic acid, and formic acid, is a commercially important reaction and requires the use of both Lewis and Bronsted acids.


2017 ◽  
Vol 204 ◽  
pp. 1094-1100 ◽  
Author(s):  
Weijie Zhao ◽  
Yingwen Li ◽  
Changhua Song ◽  
Sijie Liu ◽  
Xuehui Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Tat-Ming Lo ◽  
In Young Hwang ◽  
Han-Saem Cho ◽  
Raissa Eka Fedora ◽  
Si Hui Chng ◽  
...  

Lignin is one of the most abundant natural resources that can be exploited for the bioproduction of value-added commodity chemicals. Oil palm empty fruit bunches (OPEFBs), byproducts of palm oil production, are abundant lignocellulosic biomass but largely used for energy and regarded as waste. Pretreatment of OPEFB lignin can yield a mixture of aromatic compounds that can potentially serve as substrates to produce commercially important chemicals. However, separation of the mixture into desired individual substrates is required, which involves expensive steps that undermine the utility of OPEFB lignin. Here, we report successful engineering of microbial hosts that can directly utilize heterogeneous mixtures derived from OPEFB lignin to produce commodity chemicals, adipic acid and levulinic acid. Furthermore, the corresponding bioconversion pathway was placed under a genetic controller to autonomously activate the conversion process as the cells are fed with a depolymerized OPEFB lignin mixture. This study demonstrates a simple, one-pot biosynthesis approach that directly utilizes derivatives of agricultural waste to produce commodity chemicals.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 937
Author(s):  
Mar López ◽  
Sandra Rivas ◽  
Carlos Vila ◽  
Valentín Santos ◽  
Juan Carlos Parajó

The acidic ionic liquid 1-(3-sulfopropyl)-3-methylimidazolium hydrogen sulfate ([C3SO3Hmim]HSO4) was employed as a catalyst for manufacturing polysaccharide-derived products (soluble hemicellulose-derived saccharides, furans, and/or organic acids) from Eucalyptus globulus wood. Operation was performed in aqueous media supplemented with [C3SO3Hmim]HSO4 and methyl isobutyl ketone, following two different processing schemes: one-pot reaction or the solubilization of hemicelluloses by hydrothermal processing followed by the separate manufacture of the target compounds from both hemicellulose-derived saccharides and cellulose. Depending on the operational conditions, the one-pot reaction could be directed to the formation of furfural (at molar conversions up to 92.6%), levulinic acid (at molar conversions up to 45.8%), or mixtures of furfural and levulinic acid (at molar conversions up to 81.3% and 44.8%, respectively). In comparison, after hydrothermal processing, the liquid phase (containing hemicellulose-derived saccharides) yielded furfural at molar conversions near 78%, whereas levulinic acid was produced from the cellulose-enriched, solid phase at molar conversions up to 49.5%.


2013 ◽  
Vol 1 (12) ◽  
pp. 1593-1599 ◽  
Author(s):  
Xun Hu ◽  
Yao Song ◽  
Liping Wu ◽  
Mortaza Gholizadeh ◽  
Chun-Zhu Li

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1082
Author(s):  
Anna Maria Raspolli Galletti ◽  
Domenico Licursi ◽  
Serena Ciorba ◽  
Nicola Di Fidio ◽  
Valentina Coccia ◽  
...  

Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the acid-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heating methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot butanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demonstrating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop.


2021 ◽  
Vol 55 (3-4) ◽  
pp. 207-222
Author(s):  
RAMANDEEP KAUR ◽  
PUNEET KAUR

"The potential of non-edible lignocellulosic biomass paves the path to sustainable economy. A large number of valueadded products have been synthesized by the fractionation of the major components of biomass, i.e. cellulose, hemicelluloses and lignin. Cellulose, the most abundant biopolymer on earth, serves as a starting material for the synthesis of various platform chemicals, such as sorbitol, 5- hydroxylmethylfurfural (HMF), dimethylfuran and levulinic acid. Hydrogels and aerogels fabricated from cellulose, modified cellulose or nanocellulose have proved valuable in a wide range of such as biomedical, food and technological applications. Cellulose-based polymers or bioplastics also emerged as an alternative to fossil fuel-based polymers. In this review, chemical paths to valorize plant cellulose for producing various value-added products have been discussed. The major challenge for valorization is the development of novel and green synthesis methods with simultaneous focus on an integrated approach."


2020 ◽  
Vol 22 (14) ◽  
pp. 4532-4540
Author(s):  
Yannik Louven ◽  
Moritz O. Haus ◽  
Marc Konrad ◽  
Jan P. Hofmann ◽  
Regina Palkovits

Bio-based monomers are produced in a two-step process starting from common platform chemicals. The heterogeneously catalyzed reduction of bio-based acids into 2-pyrrolidones makes for a promising drop-in technology for the industrial NVP production.


2021 ◽  
Vol 5 (1) ◽  
pp. 108-111
Author(s):  
Gabriel Abranches Dias Castro ◽  
Sergio Antonio Fernandes

Levulinic acid, one of the top 12 value-added chemicals, can be obtained by the transformation of biomass by acid catalysis.


Sign in / Sign up

Export Citation Format

Share Document