Metal triflates formation of C12-C22 phenolic compounds by simultaneous C-O breaking and C-C coupling of lignin-derived benzyl phenyl ether

2021 ◽  
Author(s):  
Mohammad Shahinur Shahinur Rahaman ◽  
Sarttrawut Tulaphol ◽  
ashten molley ◽  
Kyle Mills ◽  
Anwar Hossain ◽  
...  

The production of fuels and chemicals from lignin can mitigate greenhouse gas emissions generated by fossil fuel processing. Current upgrading pathways for converting lignin into useful chemicals require multiple steps...

Author(s):  
Manuel-Angel Gonzalez-Chapa ◽  
Jose-Ramon Vega-Galaz

Combined Heat and Power systems have been used all around the world due to their effective and viable way of transforming energy from fossil fuel. Indeed, the advantage of lower greenhouse gas emissions compared to those obtained in conventional power or conventional heat generation systems have been an important factor giving CHP systems an advantage over these conventional ones. Certainly CHP has been, and continues to be, a good practice while renewable technologies become more economically. While these technologies emerge it is important to continue minimizing these greenhouse gas emissions from conventional and CHP units as much as possible. This paper deals with the fuel optimization of power, heat and CHP systems including emissions and ambient conditions constraints. Ambient conditions variations are evaluated before solving the optimization and then introduced to the problem to consider their effects.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Daniel E. Ross ◽  
Christopher W. Marshall ◽  
Djuna Gulliver ◽  
Harold D. May ◽  
R. Sean Norman

Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.


Author(s):  
Hill and

Media attention has focused most intently on lawsuits seeking to force action to cut greenhouse-gas emissions and to hold fossil-fuel companies to account. Even if the courts fail to resolve the essential challenge of cutting greenhouse-gas emissions, they will surely find themselves enmeshed in litigation for years over who pays for the damage. In courtroom after courtroom, judges will reach decisions that can contribute to or hinder resilience. This chapter explores how litigation over the harm caused by climate change impacts could offer greater clarity on who should pay for the damages and thereby spur decisions to invest in resilience on a large scale. As the severity and frequency of climate change-related damages grow, corporate directors and officers, architects, engineers, manufacturers, and others who have a duty to consider foreseeable harm and to manage the risk, will likely find themselves on the receiving end of litigation alongside fossil fuel companies and governments.


2018 ◽  
Vol 54 (23) ◽  
pp. 2825-2837 ◽  
Author(s):  
Muhammad Munir Sadiq ◽  
Kiyonori Suzuki ◽  
Matthew R. Hill

The huge energy requirement for industrial separations of chemical mixtures has necessitated the need for the development of energy efficient and alternative separation techniques in order to mitigate the negative environmental impacts associated with greenhouse gas emissions from fossil fuel combustions for energy generation.


2021 ◽  
Author(s):  
Paniz Izadi ◽  
Jean-Marie Fontmorin ◽  
Swee Su Lim ◽  
Ian Head ◽  
Eileen H Yu

Technologies able to convert CO2 to various feedstocks for fuels and chemicals are emerging due to the urge of reducing greenhouse gas emissions and de-fossilizing chemical production. Microbial electrosynthesis (MES)...


Author(s):  
Obey Gotore ◽  
Vadzanayi Mushayi ◽  
Sawitree Tipnee

The fossil fuel-based linear economy has many severe drawbacks, including the need for energy security and the resulting environmental degradation. In a new cycle of the bio-economy that is becoming increasingly important, biomass waste has been used to generate energy while reducing pollution and greenhouse gas emissions. The growth of renewable energy will be substantial in the reduction of greenhouse gas emissions in order to achieve the ambitious goal of becoming carbon neutral by the mid-century. It appears that using anaerobic digestion technology to produce methane-rich biogas from biomass has a great deal of potential in this scenario. The cattail fresh and dry biomass substrate with pig wastes as inoculum was tested for biogas production. Cattail's highly complex lignocellulosic structures make it challenging to decompose as a biogas substrate. Alkaline pretreatment is one of the efficient tools in solubilizing lignin. As a result, chemical pretreatment of biomass (2 % sodium hydroxide) was a unique method for increasing biogas generation by reducing complex polymers of lignocellulosic materials into simpler molecules that microorganisms could digest. The fresh and dry biomass substrate added fermenter was produced with 57% and 60% methane, respectively.


Sign in / Sign up

Export Citation Format

Share Document