Finely Regulated Quantum Well Structure in Quasi-2D Ruddlesden-Popper Perovskite Solar Cell with an Efficiency Exceeding 20%

Author(s):  
Jianghu Liang ◽  
Zhanfei Zhang ◽  
Qi Xue ◽  
Yiting Zheng ◽  
Xueyun Wu ◽  
...  

The development of quasi-two-dimensional (2D) Ruddlesden-Popper phase perovskite solar cells (PSCs) has greatly improved the stability of devices. However, the presence of quantum confinement effects and insulating spacer cations in...

2020 ◽  
Vol 13 (11) ◽  
pp. 4344-4352
Author(s):  
Ning Yang ◽  
Cheng Zhu ◽  
Yihua Chen ◽  
Huachao Zai ◽  
Chenyue Wang ◽  
...  

An in situ cross-linked 1D/3D perovskite heterostructure achieved a perovskite solar cell with a 21.19% PCE and operational stability over 3000 hours.


RSC Advances ◽  
2018 ◽  
Vol 8 (55) ◽  
pp. 31502-31509 ◽  
Author(s):  
Zahra Hosseini ◽  
Teymoor Ghanbari

Optical modeling of a GQD-filled LDS layer on top of a perovskite solar cell (PSC) confirms GQDs as a suitable candidate as a luminescent material for application of the LDS strategy in PSCs.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Meiying Liang ◽  
Adnan Ali ◽  
Abdelhak Belaidi ◽  
Mohammad Istiaque Hossain ◽  
Oskar Ronan ◽  
...  

Abstract Organometallic-halide perovskite solar cells (PSCs) are emerging as the most promising next generation solar cell devices. However, the stability is still the main bottleneck of their further development. Here, we introduce two-dimensional (2D) molybdenum chalcogenides (MoS2 and MoSe2) (MCs) nanoflakes as a buffer layer between perovskite layer and hole transport layer (HTL) to improve the stability of the organometallic-halide PSCs. 2D MCs are obtained via liquid-phase exfoliated (LPE) approach, and Glass/FTO/compact-TiO2/ mesoporous-TiO2/FA85MA15PbI85Br15/2D MCs/Spiro-OMeTAD/Au structured solar cell devices are designed and fabricated. In this system, 2D MCs act both as a protective layer and an additional HTL of PSCs. This kind of PSCs achieve a relatively high-power conversion efficiency (PCE) of 14.9%, along with a much longer lifetime stability compared to the standard PSCs. After 1 h, PCE of the PSC adding a 2D MCs buffer layer could maintain 93.1% of initial value, while the PCE of the standard PSC dropped dramatically to 78.2% of initial efficiency. Our results pave the way towards the implementation of 2D MCs nanoflakes as a material able to boost the shelf life of PSCs and further provide the opportunity to fabricate large-area PSCs in view of their commercialization.


2017 ◽  
Vol 4 (1) ◽  
pp. 16-30 ◽  
Author(s):  
Chinedu Sabastine Ezike ◽  
G.M. Zebaze Kana ◽  
A. O. Aina

Solar energy has the potential to solve world energy problem as it is pollution- free. It could be enhanced using perovskite material as an absorber in perovskite solar cells. The history and what this material is made up of are emphasized. Different methods of fabrication, improving the power conversion efficiency (PCE) and factors influencing degradation of perovskite-based solar are stated. Because of the fact that this material based solar cells are not yet developed, its stability was reviewed to bring different technology employed in tackling the stability aiming for a better understanding of the material and the devices and facilitates the commercialization of perovskite solar cell.


Author(s):  
Leiping Duan ◽  
Ashraf Uddin

Metal halide perovskite solar cells (PSCs) continue to improve their power conversion efficiency by over 25.5% which is at the same level as silicon solar cells. The stability of perovskite...


2018 ◽  
Vol 11 (12) ◽  
pp. 3349-3357 ◽  
Author(s):  
Xuejie Zhu ◽  
Zhuo Xu ◽  
Shengnan Zuo ◽  
Jiangshan Feng ◽  
Ziyu Wang ◽  
...  

The record efficiency of a two-dimensional perovskite solar cell reaches 16.92% (certified at 16.6%) with excellent stability using a vapor-fumigation technique.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2020 ◽  
Vol 14 ◽  

T Perovskite solar cells are becoming a dominant alternative for the traditional solar cells reaching an efficiency of 25.2% in a short span of twelve years (2008-2020). Here, we are going to describe a simple process to 'put a voice on a laser beam' and transmit it over a distance via a perovskite solar cell. This process considered as a fascinating example of amplitude modulation of light using sound vibrations. Therefore, the design and simulation of the perovskite solar cell will be described in details in this work. This design is concerned about the lead-free based perovskite solar cell model with the total proposed structure “Metal contact /PEDOT:PSS/ CH3NH3SnI3/ ZnO/ SnO2:F/ Metal contact”. To study the efficiency and the performances of a solar cell, the use of well-known software so-called SCAPS-1D is undertaken to perform the system simulation. The obtained results show also the influence of the doping level of the HTM layer and absorber layer thickness on the performance of the device. So far, only the simulation part has been validated. Despite the costeffect of the system prototype, however, it could be implemented here in the laboratory as perspective work.


Sign in / Sign up

Export Citation Format

Share Document