scholarly journals Mechanisms and effects of zinc oxide nanoparticle transformations on toxicity to zebrafish embryos

Author(s):  
Gyudong Lee ◽  
Byongcheun Lee ◽  
Ki-Tae Kim

Environmental transformations modify the physicochemical properties of ZnO NPs, modulate their ability to reduce zinc ions, and determine the degree of toxicity reduction in zebrafish embryos.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5462
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

There is an error in the title [...]


2016 ◽  
Vol 70 (11) ◽  
Author(s):  
Kateřina Hrdá ◽  
Jakub Opršal ◽  
Petr Knotek ◽  
Miloslav Pouzar ◽  
Milan Vlček

AbstractToxicity of zinc oxide nanoparticle (ZnO-NPs) powder and water soluble salt of Zn (ZnCl


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ahmed Nabil ◽  
Mohamed M. Elshemy ◽  
Medhat Asem ◽  
Marwa Abdel-Motaal ◽  
Heba F. Gomaa ◽  
...  

Cancer, as a group, represents the most important cause of death worldwide. Unfortunately, the available therapeutic approaches of cancer including surgery, chemotherapy, radiotherapy, and immunotherapy are unsatisfactory and represent a great challenge as many patients have cancer recurrence and severe side effects. Methotrexate (MTX) is a well-established (antineoplastic or cytotoxic) chemotherapy and immunosuppressant drug used to treat different types of cancer, but its usage requires high doses causing severe side effects. Therefore, we need a novel drug with high antitumor efficacy in addition to safety. The aim of this study was the evaluation of the antitumor efficacy of zinc oxide nanoparticle (ZnO-NPs) and sorafenib alone or in combination on solid Ehrlich carcinoma (SEC) in mice. Sixty adult female Swiss-albino mice were divided equally into 6 groups as follows: control, SEC, MTX, ZnO-NPs, sorafenib, and ZnO-NPs+sorafenib; all treatments continued for 4 weeks. ZnO-NPs were characterized by TEM, zeta potential, and SEM mapping. Data showed that ZnO-NPs synergized with sorafenib as a combination therapy to execute more effective and safer anticancer activity compared to monotherapy as showed by a significant reduction (P<0.001) in tumor weight, tumor cell viability, and cancer tissue glutathione amount as well as by significant increase (P<0.001) in tumor growth inhibition rate, DNA fragmentation, reactive oxygen species generation, the release of cytochrome c, and expression of the apoptotic gene caspase-3 in the tumor tissues with minimal changes in the liver, renal, and hematological parameters. Therefore, we suggest that ZnO-NPs might be a safe candidate in combination with sorafenib as a more potent anticancer. The safety of this combined treatment may allow its use in clinical trials.


Author(s):  
Han Tao ◽  
Songshen Hu ◽  
Chuchu Xia ◽  
Mengyu Wang ◽  
Tonglin Wang ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) are widely used in the manufacture of textile fibers, synthetic rubber, and paint. However, crop yields and quality are threatened by the increased use of...


2019 ◽  
Vol 14 (1) ◽  
pp. 59-76
Author(s):  
Hailong Hu ◽  
Qian Guo ◽  
Xingpei Fan ◽  
Xiangjuan Wei ◽  
Daqian Yang ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
E. Y. Shaba ◽  
J. O. Jacob ◽  
J. O. Tijani ◽  
M. A. T. Suleiman

AbstractIn this era, nanotechnology is gaining enormous popularity due to its ability to reduce metals, metalloids and metal oxides into their nanosize, which essentially alter their physical, chemical, and optical properties. Zinc oxide nanoparticle is one of the most important semiconductor metal oxides with diverse applications in the field of material science. However, several factors, such as pH of the reaction mixture, calcination temperature, reaction time, stirring speed, nature of capping agents, and concentration of metal precursors, greatly affect the properties of the zinc oxide nanoparticles and their applications. This review focuses on the influence of the synthesis parameters on the morphology, mineralogical phase, textural properties, microstructures, and size of the zinc oxide nanoparticles. In addition, the review also examined the application of zinc oxides as nanoadsorbent for the removal of heavy metals from wastewater.


Sign in / Sign up

Export Citation Format

Share Document