One-pot ethanol production under optimized pretreatment conditions using agave bagasse at high solids loading with low-cost biocompatible protic ionic liquid

2021 ◽  
Author(s):  
Jose A. Perez-Pimienta ◽  
Gabriella Papa ◽  
Jian Sun ◽  
Vitalie Stavila ◽  
Arturo Sanchez ◽  
...  

Agave bagasse (AG) is used as potential bioenergy feedstock due to its high biomass productivity, even in semiarid lands. In particular, Ionic liquid (IL) pretreatment using aprotic ILs (AILs) has...

2017 ◽  
Vol 114 (5) ◽  
pp. 980-989 ◽  
Author(s):  
Mingjie Jin ◽  
Cory Sarks ◽  
Bryan D. Bals ◽  
Nick Posawatz ◽  
Christa Gunawan ◽  
...  

2017 ◽  
Vol 202 ◽  
pp. 331-349 ◽  
Author(s):  
Lisa Weigand ◽  
Shahrokh Mostame ◽  
Agnieszka Brandt-Talbot ◽  
Tom Welton ◽  
Jason P. Hallett

The ionoSolv pretreatment is a new technique employing protic low-cost ionic liquids and has previously been applied to successfully fractionate switchgrass and the grass Miscanthus giganteus. This study investigates the effect of using the protic ionic liquid solution [N2220][HSO4]80% with two different acid/base ratios (1.02 and 0.98) at 120, 150 and 170 °C on the pretreatment outcome of the hardwood willow. The ionic liquid solution was able to fractionate willow, and a pulp and lignin fraction were recovered after treatment. The pretreatment success was determined via enzymatic hydrolysis of the pulp, which showed that the ionoSolv pretreatment was able to increase enzymatic glucose yields compared to untreated willow biomass. The pretreatment produced a cellulose-rich pulp with high hemicellulose and lignin removal. The pulp composition and glucose yield after saccharification were greatly influenced by the acidity of the ionic liquid solution, temperature and pretreatment time. The extracted lignin was analysed via 2-D HSQC NMR spectroscopy and GPC to investigate the changes in the lignin structure induced by the pretreatment severity. The lignin structure (in terms of inter-unit linkages and S/G ratio) and molecular weight varied significantly depending on the pretreatment conditions used.


2017 ◽  
Vol 19 (13) ◽  
pp. 3152-3163 ◽  
Author(s):  
Jian Sun ◽  
N. V. S. N. Murthy Konda ◽  
Ramakrishnan Parthasarathi ◽  
Tanmoy Dutta ◽  
Marat Valiev ◽  
...  

We present an inexpensive and biocompatible protic ionic liquid that enables one-pot integrated cellulosic ethanol production without any pH adjustments and without water-wash or solid–liquid separations.


2012 ◽  
Vol 468-471 ◽  
pp. 2078-2081
Author(s):  
Qing Ye ◽  
Jun Jie Hao ◽  
Zhi Meng Guo ◽  
Min Chao Ru

Ti-6Al-4V alloy was prepared by gelcasting. Plasma rotating electrode and hydrogenation-dehydrogenation Ti-6Al-4V powders were mixed used to meet both high performance and low cost objectives. The morphological properties were investigated by SEM. The results showed that the gelcasting green body with mixed powders has advantages of high solids loading and excellent sinterability. After sintered at 1400°C for 2h, the relative density reached 98%. The bending strength and hardness were 313MPa and 49.8(HRC).


2016 ◽  
Vol 111 ◽  
pp. 387-402 ◽  
Author(s):  
Elin Svensson ◽  
Valeria Lundberg ◽  
Mikael Jansson ◽  
Charilaos Xiros ◽  
Thore Berntsson

2017 ◽  
Vol 60 (4) ◽  
pp. 1025-1033
Author(s):  
Alicia A. Modenbach ◽  
Sue E. Nokes ◽  
Michael D. Montross ◽  
Barbara L. Knutson

Abstract. High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment and hydrolysis. Increasing the enzyme dosage improved cellulose conversion from 9.6% to 36.8% when high-solids loadings were used in both unit operations; however, increasing NaOH loading and pretreatment time did not increase the conversion efficiency. The enzyme-to-substrate ratio had a larger impact on cellulose conversion than the NaOH pretreatment conditions studied, resulting in recommendations for an on-farm bioconversion system. Keywords: Corn stover, Enzymatic hydrolysis, Enzyme loading, High solids, Low solids, Sodium hydroxide.


2001 ◽  
Vol 206-213 ◽  
pp. 75-78
Author(s):  
O. Lyckfeldt ◽  
Lisa Palmqvist ◽  
Frederic Poeydemenge

Sign in / Sign up

Export Citation Format

Share Document