Quantification of anthropogenic TiO2 nanoparticles in soils and sediments combining size fractionation and trace element ratio

Author(s):  
Allan Philippe ◽  
Ahmad Bazoobandi ◽  
Nadine Goeppert

Soils and sediments are the most important sinks for anthropogenic TiO2 nanoparticles. Therefore, it is important to assess their environmental impact and monitor their concentration in this media. Since these...

2015 ◽  
Vol 103 (3) ◽  
Author(s):  
Lindis Skipperud ◽  
Brit Salbu

AbstractTo assess the long term environmental impact of radioactive contamination of ecosystems, information on source terms including radionuclide speciation, mobility and biological uptake is of high importance. The speciation of radionuclides deposited or occurring naturally depends on source term and release scenario characteristics, transport and dispersion mechanisms and ecosystem properties. If mobile species are present, ecosystem transfer is relatively fast, whereas the ecosystem transfer is delayed if radionuclides are present as particles or incorporated in mineral lattices.This paper discusses cases showing important factors influencing the mobility of different radionuclides and metals. As examples can be given:


2020 ◽  
Vol 81 (4) ◽  
pp. 834-844
Author(s):  
Olga Konechnaya ◽  
Sabine Lüchtrath ◽  
Larissa Dsikowitzky ◽  
Jan Schwarzbauer

Abstract Microplastic particles have been recognized as global hazardous pollutants in the last few decades pointing to the importance of analyzing and monitoring microplastics, especially in soils and sediments. This study focused on a multi-step approach for microplastic analysis combining grain size fractionation, density separation and identification by μ-FTIR-spectroscopy. Eight widely used polymers (polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrol (PS), polyethylenterephthalate (PET), polymethylmethacrylate (PMMA), polyurethane (PU) and polyamide (PA)) were fractionated into four groups of grain sizes (0.1–5 mm). Thereafter, sea sand was spiked with these particles to test a ZnCl2-based density separation for the polymer types and the various grain sizes. The obtained recovery rates were close to 100% showing that ZnCl2-based density separation is suitable to separate the polymer particles from a sandy matrix. This approach was extended on three further environmental matrices and recovery rates for two of them (sandy-silty and fine-grained sediment) also provided reliable values (94–106%). Lastly, the developed multi-step approach was verified by analyzing an environmental sample (sediment from river Tiranë, Albania) characterized by smaller grain size and moderate organic matter content. Identification of two polymer types in different grain size classes verified the suitability of the developed approach for microplastic analyses on particulate matter such as soils and sediments.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


2020 ◽  
Author(s):  
T.V. Naber ◽  
C. Tegner

Supplementary Data Files: (1) Sample list and description; (2) GPS positions of samples; (3) Accuracy of major and trace element bulk rock compositions and precision of repeat analyses; (4) Photomicrographs; (5) Clinopyroxene, plagioclase and olivine compositions; (6) SHRIMP U-Pb methods and results; (7) 7. Nb-Zr-Y tectonic discrimination diagram; (8) Ti-Zr-Y tectonic discrimination diagram; (9) Ti-V tectonic discrimination diagram; (10) MgO-FeOtot_Al2O3 tectonic discrimination diagram; (11) AFM diagram; and (12) Th/Nb vs. SiO2 diagram.


Sign in / Sign up

Export Citation Format

Share Document