scholarly journals Novel TiO2/TPU Composite Fiber-based Smart Textiles for Photocatalytic Applications

2022 ◽  
Author(s):  
Jing Zhang ◽  
Xuan Li ◽  
Jian Guo ◽  
Gengheng Zhou ◽  
Xiang Li ◽  
...  

Herein, we prepare a novel hollow composite fiber via a wet-spinning process to overcome separation and recovery problems of nanostructured catalysts. The obtained TiO2/TPU fiber showed excellent mechanical and photocatalytic...

2010 ◽  
Vol 26-28 ◽  
pp. 104-107
Author(s):  
Hui Qin Zhang ◽  
Li Yan Zhang ◽  
Xiao Wei He

Concentrated sulfuric and concentrated nitric acids treated multi-walled carbon nanotubes (MWNTs) and polyacrylonitrile (PAN) were fabricated via a conventional wet spinning process. Mechanical properties of the composite fibers were studied by tensile testing and structures of the fibers were investigated via SEM and DMA. The results showed that the strength, storage modulus and glass translation temperature of the composite fiber containing 5% content of MWNTs were improved compared with those of pure PAN. The fiber with 5wt% MWNTs showed its conductivity of an order of 10-3S/cm.


2019 ◽  
Vol 7 (35) ◽  
pp. 10769-10776 ◽  
Author(s):  
Wenfeng Ding ◽  
Jiangman Sun ◽  
Guanyu Chen ◽  
Liangyu Zhou ◽  
Jian Wang ◽  
...  

Stretchable multicolor light-emitting fibers were realized by incorporating an ultralow content of AIEgens in polydimethylsiloxane fibers through a continuous dry–wet spinning process for applications in smart textiles.


2021 ◽  
Vol 412 ◽  
pp. 128650
Author(s):  
Hyeon Dam Jeong ◽  
Seo Gyun Kim ◽  
Gyeong Min Choi ◽  
Minji Park ◽  
Bon-Cheol Ku ◽  
...  

Biochimie ◽  
2020 ◽  
Vol 175 ◽  
pp. 77-84
Author(s):  
Hongnian Zhu ◽  
Yuan Sun ◽  
Tuo Yi ◽  
Suyang Wang ◽  
Junpeng Mi ◽  
...  

2019 ◽  
Vol 90 (3-4) ◽  
pp. 460-468 ◽  
Author(s):  
Yan Zhuang ◽  
Han Wang ◽  
Linfeng Wang ◽  
Changjun Liu ◽  
Yuan Xu ◽  
...  

This study investigates the effect of the constituents and temperature of a coagulation bath on the morphology and water absorption behavior of a skin–core filament, which has potential application in the field of controlled drug release, based on biomedical polyurethane (BPU) and native silk fibroin microparticles (NSFPs). BPU solution and BPU/NSFP blend solution were extruded from the cortex and core channel of a coaxial double injector into a coagulation bath with different constituents and at different temperatures to form filaments. Scanning electron microscopy analysis of the skin–core filament prepared by wet-spinning revealed that the addition of ethanol decreased the exchange speed between the solvent and non-solvent and led to the formation of micropores on the surface. Meanwhile, the interface between the cortex and core became pronounced and the water absorption capability of the filament decreased with increasing ethanol concentration in the coagulation bath. The high temperature of the coagulation bath also improved the exchange speed between the solvent and non-solvent; however, its effect on the morphology of the filament was weak. Thus, a skin–core filament with different morphologies and water absorption behaviors was fabricated by controlling the constituents and temperature of the coagulation bath during the wet-spinning process. This skin–core filament has potential applications in controlled drug release.


2020 ◽  
Vol 240 ◽  
pp. 116313 ◽  
Author(s):  
Da Bao ◽  
Lisha Liu ◽  
Ting Sun ◽  
Ying Han ◽  
Fanliang Meng ◽  
...  

2015 ◽  
Vol 35 (8) ◽  
pp. 785-791 ◽  
Author(s):  
Shufeng Li ◽  
Rui Wang

Abstract A novel sheath-core poly(ethylene terephthalate) (PET)/poly(ethylene-co-vinyl alcohol) (EVOH) composite fiber was designed and manufactured to improve the hydrophilicity of the PET fibers. The thermal stability of EVOH was first examined to determine the possible processing temperature. Second, the rheological characteristics of EVOH were measured to obtain the appropriate spinning parameters. Then, PET/EVOH composite fibers with various sheath-core ratios were manufactured and the effect of sheath-core ratio on the stable spinning process was investigated. Scanning electron microscopy (SEM) shows that the PET/EVOH fibers possess a round sheath-core cross-section and a smooth surface, indicating successful spinning. Finally, the mechanical properties and moisture absorption of the PET/ EVOH composite fibers were measured. For PET/EVOH composite fibers, the PET content contributes to the mechanical properties and the EVOH content contributes to the moisture absorption. For the PET/EVOH composite fibers with a sheath-core ratio of 50:50, the moisture regains at room conditions reach to 2.8% and the breaking strength is 2.53 cN/dtex. These good mechanical and moisture properties attract good application prospects.


2018 ◽  
Vol 194 ◽  
pp. 217-224 ◽  
Author(s):  
Min Dong ◽  
Zhixin Xue ◽  
Jingjing Liu ◽  
Miao Yan ◽  
Yanzhi Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document