Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process

Biochimie ◽  
2020 ◽  
Vol 175 ◽  
pp. 77-84
Author(s):  
Hongnian Zhu ◽  
Yuan Sun ◽  
Tuo Yi ◽  
Suyang Wang ◽  
Junpeng Mi ◽  
...  
2021 ◽  
Author(s):  
Frank Y.C. Liu

Surgical site infection (SSI) from sutures is a global health emergency because of the antibiotic crisis. Methicillin-resistant S. aureus and other emerging strains are difficult to treat with antibiotics, so drug-free sutures with antimicrobial properties are a solution. Functionalized spider silk protein (spidroin) is a candidate for its extraordinary strength because it has a large repetitive region (150Rep) that forms crosslinked beta-sheets. The antimicrobial peptide HNP-1 can be connected to recombinant spidroin to create antimicrobial silk. Ni-NTA purified 2Rep-HNP1 fusion protein was mixed with recombinant NT2RepCT spidroin at 1:25, 1:20, 1:10 ratios, and spun into silk fibers by syringe-pumping protein into a 100% isopropanol bath. Beta-sheet crosslinking of the identical 2Rep regions tagged the 2Rep-HNP1 permanently onto the resultant silk. Silk showed no sign of degradation in an autoclave, PBS, or EtOH. The tagged 2Rep-HNP1 retained broad-spectrum antimicrobial activity >90% against S. aureus and E. coli as measured by log reduction and radial diffusion assay. Furthermore, a modified expression protocol increased protein yield of NT2RepCT 2.8-fold, and variable testing of the spinning process demonstrated the industrial viability of silk production. We present a promising suture alternative in antimicrobial recombinant spider silk.


2020 ◽  
Author(s):  
William Finnigan ◽  
Aled D. Roberts ◽  
Nigel S. Scrutton ◽  
Rainer Breitling ◽  
Jonny J. Blaker ◽  
...  

AbstractSpider silk spidroins consist of long repetitive protein strands, flanked by globular terminal domains. The globular domains are often omitted in recombinant spidroins, but are thought to be essential for the spiders’ natural spinning process. Mimicking this spinning process could be an essential step towards producing strong synthetic spider silk. Here we describe the production of a range of mini-spidroins with both terminal domains, and characterize their response to a number of biomimetic spinning triggers. Our results suggest that the inclusion of the terminal domains is needed to match the response to shear that native spidroins exhibit. Our results also suggest that a pH drop alone is insufficient to trigger assembly in a wet-spinning process, and must be combined with salting-out for effective fiber formation. With these insights, we applied these assembly triggers for relatively biomimetic wet spinning. This work adds to the foundation of literature for developing improved biomimetic spinning techniques, which ought to result in synthetic silk that more closely approximates the unique properties of native spider silk.


2017 ◽  
Author(s):  
Hsuan-Chen Wu ◽  
Shang-Ru Wu ◽  
Jen-Chang Yang

In spite of all the efforts on deciphering such spinning process of spiders, the underlying mechanism currently is yet to be fully revealed. In this research, we designed a novel approach to quantitatively estimate the overall concentration change of spider silk along the progression of liquid-to-solid silk transition from the gland silk. As a prior characterization, we first studied the influence of silking-rate, ranged from 1.5 to 8.0 m/min, on spun fiber diameters as well as fiber strengths. Furthermore, the liquid contents of silk in the sac and the silk fibers leaving the spinneret were investigated by thermogravimetric analysis (TGA) and by estimating the ratio of collected dried silk to the weight loss of spider, respectively. The strength of spun silk fiber showed in the range of 7.5 - 8.5 g/denier; while, the fiber diameter of 0.7 - 1.1 deniers for spun silk first increased then decreased with take-up speed of winder. The results showed that the percentage liquid content of silk stored in the major ampullate sac (50.0 wt%) was lower than that of silk leaving the spinnerets (80.9 - 96.1 wt%), indicating a liquid supplying mechanism might be involved during the spinning process. Thus, a hypothesis of liquid coating on the outer surface of the silk thread served as a lubrication layer to reduce the silking resistance in spinning spigot of spider was proposed. In addition, we speculated the spigot serves as a valve-like regulator that controls not only the fiber diameter but also the lubrication layer. These findings provide understanding in physiological function of the spider spinning process and could further shed some light on future biomimetic development of silk material fabrication.


Author(s):  
Costas N. Karatzas ◽  
Nathalie Chretien ◽  
François Duguay ◽  
Annie Bellemare ◽  
Jiang Feng Zhou ◽  
...  

2021 ◽  
Vol 412 ◽  
pp. 128650
Author(s):  
Hyeon Dam Jeong ◽  
Seo Gyun Kim ◽  
Gyeong Min Choi ◽  
Minji Park ◽  
Bon-Cheol Ku ◽  
...  

Author(s):  
Margret Weissbach ◽  
Marius Neugebauer ◽  
Anna-Christin Joel

AbstractSpider silk attracts researchers from the most diverse fields, such as material science or medicine. However, still little is known about silk aside from its molecular structure and material strength. Spiders produce many different silks and even join several silk types to one functional unit. In cribellate spiders, a complex multi-fibre system with up to six different silks affects the adherence to the prey. The assembly of these cribellate capture threads influences the mechanical properties as each fibre type absorbs forces specifically. For the interplay of fibres, spinnerets have to move spatially and come into contact with each other at specific points in time. However, spinneret kinematics are not well described though highly sophisticated movements are performed which are in no way inferior to the movements of other flexible appendages. We describe here the kinematics for the spinnerets involved in the cribellate spinning process of the grey house spider, Badumna longinqua, as an example of spinneret kinematics in general. With this information, we set a basis for understanding spinneret kinematics in other spinning processes of spiders and additionally provide inspiration for biomimetic multiple fibre spinning.


2013 ◽  
Vol 14 (6) ◽  
pp. 1751-1760 ◽  
Author(s):  
Sherry L. Adrianos ◽  
Florence Teulé ◽  
Michael B. Hinman ◽  
Justin A. Jones ◽  
Warner S. Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document