Photo-controlled self-assembly behavior of novel amphiphilic polymers with rosin-based azobenzene group

2022 ◽  
Author(s):  
Wanbing Li ◽  
Haibo Zhang ◽  
Zhaolan Zhai ◽  
Xujuan Huang ◽  
Shibin Shang ◽  
...  

Novel ‘bola’ rosin-based photo-responsive amphiphilic polymers PMPn (n=17, 34, 69) were synthesized using polyethyleneglycol (PEG) as a double hydrophilic head and N-azobenzenemaleimidepimaric (AZOMPA) as a hydrophobic tail. The relatively fixed...

Soft Matter ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Timothy R. Pearce ◽  
Efrosini Kokkoli

ssDNA-amphiphiles with three building blocks, a hydrophobic tail, a polycarbon spacer and different ssDNA headgroups that were created to explore the effect of DNA length and secondary structure on the self-assembly behavior of the amphiphiles, formed bilayer nanotapes that transitioned from twisted nanotapes, to helical nanotapes to nanotubes.


2021 ◽  
Author(s):  
Wei Wen ◽  
Aihua Chen

Self-assembly of amphiphilic single chain Janus nanoparticles (SCJNPs) is a novel and promising approach to fabricate assemblies with diversified morphologies. However, the experimental research of the self-assembly behavior of SCJNPs...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Itami ◽  
Akihito Hashidzume ◽  
Yuri Kamon ◽  
Hiroyasu Yamaguchi ◽  
Akira Harada

AbstractBiological macroscopic assemblies have inspired researchers to utilize molecular recognition to develop smart materials in these decades. Recently, macroscopic self-assemblies based on molecular recognition have been realized using millimeter-scale hydrogel pieces possessing molecular recognition moieties. During the study on macroscopic self-assembly based on molecular recognition, we noticed that the shape of assemblies might be dependent on the host–guest pair. In this study, we were thus motivated to study the macroscopic shape of assemblies formed through host–guest interaction. We modified crosslinked poly(sodium acrylate) microparticles, i.e., superabsorbent polymer (SAP) microparticles, with β-cyclodextrin (βCD) and adamantyl (Ad) residues (βCD(x)-SAP and Ad(y)-SAP microparticles, respectively, where x and y denote the mol% contents of βCD and Ad residues). Then, we studied the self-assembly behavior of βCD(x)-SAP and Ad(y)-SAP microparticles through the complexation of βCD with Ad residues. There was a threshold of the βCD content in βCD(x)-SAP microparticles for assembly formation between x = 22.3 and 26.7. On the other hand, the shape of assemblies was dependent on the Ad content, y; More elongated assemblies were formed at a higher y. This may be because, at a higher y, small clusters formed in an early stage can stick together even upon collisions at a single contact point to form elongated aggregates, whereas, at a smaller y, small clusters stick together only upon collisions at multiple contact points to give rather circular assemblies. On the basis of these observations, the shape of assembly formed from microparticles can be controlled by varying y.


Author(s):  
Ganghuo Pan ◽  
Jie Leng ◽  
Liye Deng ◽  
Liwen Xing ◽  
Rui Feng

2012 ◽  
Vol 126 (6) ◽  
pp. 2067-2076 ◽  
Author(s):  
Bao Zhang ◽  
Di Wang ◽  
Meng Li ◽  
Yapeng Li ◽  
Xuesi Chen

2017 ◽  
Vol 50 (18) ◽  
pp. 7155-7168 ◽  
Author(s):  
Evgeniia V. Konishcheva ◽  
Ulmas E. Zhumaev ◽  
Maximilian Kratt ◽  
Valentin Oehri ◽  
Wolfgang Meier

Sign in / Sign up

Export Citation Format

Share Document