Microscopic study of ion transport in porous electrode of desalination battery based on Lattice Boltzmann method

2022 ◽  
Author(s):  
Shouguang Yao ◽  
Jianguo Luo ◽  
Rui Liu ◽  
Xiaoyu Shen ◽  
Xinyu Huang

The desalting process of desalting battery includes ion transport in pores, diffusion in active particles and electrochemical reaction at the interface between solution and active particles. In this paper, quartet...

Author(s):  
Kyle N. Grew ◽  
Abhijit S. Joshi ◽  
Aldo A. Peracchio ◽  
Wilson K. S. Chiu

A coupled electrochemical reaction and diffusion model has been developed and verified for investigation of mass transport processes in Solid Oxide Fuel Cell (SOFC) anode triple-phase boundary (TPB) regions. The coupled model utilizes a two-dimensional (2D), multi-species Lattice Boltzmann Method (LBM) to model the diffusion process. The electrochemical model is coupled through localized flux boundary conditions and is a function of applied activation overpotential and the localized hydrogen and water mole fractions. This model is designed so that the effects of the anode microstructure within TPB regions can be examined in detail. Results are provided for the independent validation of the electrochemical and diffusion sub-models, as well as for the coupled model. An analysis on a single closed pore is completed and validated with a Fick's law solution. A competition between the electrochemical reaction rate and the rate of mass transfer is observed to be dependent on inlet hydrogen mole fraction. The developed model is presented such that future studies on SOFC anode microstructures can be completed.


Sign in / Sign up

Export Citation Format

Share Document