In Situ Formed Flexible Three-Dimensional Honeycomb-like Film for LiF/Li3N-riched Hybrid Organic-Inorganic Interphase on Li Metal Anode

Author(s):  
Daobin Mu ◽  
Chengwei Ma ◽  
Ge Mu ◽  
Haijian Lv ◽  
Chengcai Liu ◽  
...  

The solid-electrolyte interphase (SEI) plays an important role in stabilizing lithium metal anode for high-energy storage batteries. However, the SEI between lithium metal anode and liquid electrolyte is usually unstable...

2019 ◽  
Vol 7 (11) ◽  
pp. 6267-6274 ◽  
Author(s):  
Wei Deng ◽  
Shanshan Liang ◽  
Xufeng Zhou ◽  
Fei Zhao ◽  
Wenhua Zhu ◽  
...  

An ultrathin and conformal ion conductive coating is realized on 3D current collectors for preventing the irreversible reaction between the electrolyte and Li metal, which has been confirmed by in situ optical observation. At the high areal capacity of 10 mA h cm−2 for the Li metal anode, a stable CE of 98.9% for 800 h can be achieved.


Author(s):  
Naiqing Zhang ◽  
Xiaojie Shen ◽  
Guangyu Zhao ◽  
Xianbo Yu ◽  
Huihuang Huang ◽  
...  

Undesirable lithium dendrite growth limits the application of lithium metal anode in high-energy storage batteries. Here, multifunctional SnSe-C composite modified 3D scaffolds is constructed to achieve dendrite-free lithium deposition. During...


2020 ◽  
Vol 8 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Lishuang Fan ◽  
Zhikun Guo ◽  
Yu Zhang ◽  
Xian Wu ◽  
Chenyang Zhao ◽  
...  

Polyvinyl alcohol (PVA) as a “glue” to cement the metal organic framework (Zn-MOF) sheet as a reasonable artificial SEI film. The artificial SEI film can efficiently adapt to the changes of the volume during the cycle, significantly improve the stability of the Li metal anode.


Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Alain Mauger ◽  
Christian M. Julien

Rechargeable lithium-metal batteries (LMBs), which have high power and energy density, are very attractive to solve the intermittence problem of the energy supplied either by wind mills or solar plants or to power electric vehicles. However, two failure modes limit the commercial use of LMBs, i.e., dendrite growth at the surface of Li metal and side reactions with the electrolyte. Substantial research is being accomplished to mitigate these drawbacks. This article reviews the different strategies for fabricating safe LMBs, aiming to outperform lithium-ion batteries (LIBs). They include modification of the electrolyte (salt and solvents) to obtain a highly conductive solid–electrolyte interphase (SEI) layer, protection of the Li anode by in situ and ex situ coatings, use of three-dimensional porous skeletons, and anchoring Li on 3D current collectors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 300
Author(s):  
Jin Lou ◽  
Kanghua Chen ◽  
Nachuan Yang ◽  
Yi Shuai ◽  
Changjun Zhu

Lithium metal anode still confronts a series of problems at the way to commercialization though it has advantages in high energy density. The formation of Li dendrite is the major limitation need to be conquered. Here, a facile and simple LiSn alloy anode prepared by a direct metallurgy method is fabricated and evaluated in both liquid electrolyte and solid electrolyte. Structural analysis and electrochemical measurements reveal the promoted ionic transference of interface and enhanced cycling stability in different electrolyte systems, without dendrite formation. Furthermore, the application of this simple and sustainable LiSn alloy can be extended to more alloy anode and might unlock the next-generation anode in the future.


2017 ◽  
Vol 114 (14) ◽  
pp. 3584-3589 ◽  
Author(s):  
Ying Zhang ◽  
Wei Luo ◽  
Chengwei Wang ◽  
Yiju Li ◽  
Chaoji Chen ◽  
...  

Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mA⋅cm−2), more-stable stripping/plating profiles, and better cycling performance (∼150 h at 3 mA⋅cm−2) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.


Author(s):  
Yue Liu ◽  
Qintao Sun ◽  
Peiping Yu ◽  
Bingyun Ma ◽  
Hao Yang ◽  
...  

Developing advanced electrolytes has been considered as a promising approach to stabilize lithium (Li) metal anode via the formation of stable solid electrolyte interphase (SEI) that can protect Li anode...


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Maryam Golozar ◽  
Andrea Paolella ◽  
Hendrix Demers ◽  
Stéphanie Bessette ◽  
Marin Lagacé ◽  
...  

AbstractLithium metal is a favorable anode material in all-solid Li-polymer batteries because of its high energy density. However, dendrite formation on lithium metal causes safety concerns. Here we obtain images of the Li-metal anode surface during cycling using in situ scanning electron microscopy. Constructing videos from the images enables us to monitor the failure mechanism of the battery. Our results show the formation of dendrites on the edge of the anode and isles of decomposed lithium bis(trifluoromethanesulfonyl)imide on the grain boundaries. Cycling at high rates results in the opening of the grain boundaries and depletion of lithium in the vicinity of the isles. We also observe changes in the surface morphology of the polymer close to the anode edge. Extrusion of lithium from these regions could be evidence of polymer reduction due to a local increase in temperature and thermal runaway assisting in dendrite formation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document