Tuning the electrochemical and catalytic ORR performance of C60 by its encapsulation in ZIF-8: a solid-state analogue of dilute fullerene solution

2021 ◽  
Vol 5 (20) ◽  
pp. 7654-7665
Author(s):  
Olivia Basu ◽  
Subhabrata Mukhopadhyay ◽  
Avik De ◽  
Anupam Das ◽  
Samar K. Das

Hassle-free encapsulation of fullerene C60 in ZIF-8 has been performed to preserve the molecularity and solution-like properties of C60 in solid-state. The resulting composite shows efficient heterogeneous electrocatalytic oxygen reduction reaction.

The Analyst ◽  
2021 ◽  
Author(s):  
Meihui Ying ◽  
Guizeng Yang ◽  
Yuanjie Xu ◽  
Hui-Ling Ye ◽  
Xing Lin ◽  
...  

Metal-organic frameworks (MOFs) have attracted extensive attention in the construction of colorimetric detection methods due to their easy modification and high density of active sites. However, most of the reported...


2019 ◽  
Vol 9 (12) ◽  
pp. 2427 ◽  
Author(s):  
Jun-Hong Li ◽  
Yi-Sen Wang ◽  
Yu-Chuan Chen ◽  
Chung-Wei Kung

Metal–organic frameworks (MOFs) are a class of porous materials constructed from metal-rich inorganic nodes and organic linkers. Because of their regular porosity in microporous or mesoporous scale and periodic intra-framework functionality, three-dimensional array of high-density and well-separated active sites can be built in various MOFs; such characteristics render MOFs attractive porous supports for a range of catalytic applications. Furthermore, the electrochemically addressable thin films of such MOF materials are reasonably considered as attractive candidates for electrocatalysis and relevant applications. Although it still constitutes an emerging subfield, the use of MOFs and relevant materials for electrocatalytic applications has attracted much attention in recent years. In this review, we aim to focus on the limitations and commonly seen issues for utilizing MOFs in electrocatalysis and the strategies to overcome these challenges. The research efforts on utilizing MOFs in a range of electrocatalytic applications are also highlighted.


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qing Luo ◽  
Zhen Ding ◽  
Huamin Sun ◽  
Zhen Cheng ◽  
Naien SHI ◽  
...  

Ultrathin two-dimensional (2D) metal-organic framework (MOF) nanosheets are prosperous advanced materials due to their particularly thin thickness and exposed active sites. The difficulty in the controlled synthesis of 2D MOF...


2021 ◽  
Author(s):  
Dae-Woon Lim ◽  
Hiroshi Kitagawa

Since the transition of energy platforms, the proton-conductive metal–organic frameworks (MOFs) exhibiting high performance have been extensively investigated with rational strategies for their potential application in solid-state electrolytes.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Arianna Melillo ◽  
Rocio Garcia ◽  
Sergio Navalon ◽  
Pedro Atienzar ◽  
Belen Ferrer ◽  
...  

2016 ◽  
Vol 52 (10) ◽  
pp. 2133-2136 ◽  
Author(s):  
Krunoslav Užarević ◽  
Timothy C. Wang ◽  
Su-Young Moon ◽  
Athena M. Fidelli ◽  
Joseph T. Hupp ◽  
...  

Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH2 accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.


Small ◽  
2020 ◽  
pp. 2007062
Author(s):  
Xijun Wei ◽  
Yingze Song ◽  
Lixian Song ◽  
Xu Dong Liu ◽  
Yanhong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document