scholarly journals Enhancing the removal efficiency of methylene blue in water by fly ash via a modified adsorbent with alkaline thermal hydrolysis treatment

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20292-20302
Author(s):  
Nga Thi Dinh ◽  
Linh Ngoc Hoang Vo ◽  
Ngoc Thi Thanh Tran ◽  
Tuan Dinh Phan ◽  
Duc Ba Nguyen

High efficiency of methylene blue adsorbent from waste coal fly ash by treatment with alkaline thermal hydrolysis.

2018 ◽  
Vol 766 ◽  
pp. 65-70 ◽  
Author(s):  
Sujitra Onutai ◽  
Takaomi Kobayashi ◽  
Parjaree Thavorniti ◽  
Sirithan Jiemsirilers

Geopolymer particles from waste coal fly ash were prepared in order to investigate adsorption process of Cadmium ions. The aim of the study is to focus on factors which affect adsorption process of heavy metals on geopolymer materials. The raw fly ash was mixed with sodium hydroxide solution and sodium silicate solution. After that geopolymer was cured at 80 °C for 24 hr. The sample was ground and washed until pH=7. The obtained geopolymer particles were dried at 60 oC. The raw materials and geopolymer were characterized. The XRD results showed a highly amorphous structure in obtained geopolymer. The major components of waste coal fly ash and synthesized geopolymer were SiO2, Al2O3, Fe2O3 and CaO. The BET surface area of fly ash and geopolymer particles were 0.83 m2/g and 85.01 m2/g, respectively. The adsorption conditions (initial concentration from 10-120 mg/L, temperature at 25-45 °C, pH of cadmium ions solution from 1-5, 0.02-0.14 g. of geopolymer and contact time for 5-180 min) were studied. From removal efficiency results, synthesized geopolymer had high removal capacity for cadmium ions (Cd2+). At pH 5 of solution, the highest Cd2+ removal capacity was obtained. In addition, the removal efficiency increases with an increasing geopolymer dosage, contact time and a decreasing of Cd2+ initial concentration. Moreover, both Langmuir and Freundlich models were investigated for studying adsorption isotherm. The result showed Langmuir model is more suitable for geopolymer adsorption of cadmium ion in aqueous solution than Freundlich model.


2020 ◽  
Vol 5 (3) ◽  
pp. 1193-1198
Author(s):  
Henilkumar M. Lankapati ◽  
Dharmesh R. Lathiya ◽  
Lalita Choudhary ◽  
Ajay K. Dalai ◽  
Kalpana C. Maheria

1996 ◽  
Vol 13 (6) ◽  
pp. 527-536 ◽  
Author(s):  
L.J. Alemany ◽  
M.C. Jiménez ◽  
M.A. Larrubia ◽  
F. Delgado ◽  
J.M. Blasco

The present work examines the possible use of fly ash, a byproduct of coal power stations, as a means of removing phenol from water, or equivalently, of restricting its movement in solid wastes or soil. Equilibrium experiments were performed to evaluate the removal efficiency of fly ash. The adsorption experiments were undertaken using fly ash treated at three different pH levels and with three different temperatures. The results indicate that although phenol can be removed from water, this depends markedly on the temperature and pH value of the treatment solution employed.


1983 ◽  
Vol 15 (11) ◽  
pp. 1-10 ◽  
Author(s):  
Dean M Golden

This paper reviews the pathways that large volume utility wastes can take which can cause environmental effects. Potential interactions of the environment with land-disposed utility wastes include: (1) effects on local air quality, (2) efforts on soils and vegetation, (3) phytotoxicity, (4) groundwater effeccts, (5) effects on surface waters, and (6) disposal site washout. Both natural and engineered mitigating mechanisms are reviewed.


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 4876-4890 ◽  
Author(s):  
Zeba Usmani ◽  
Vipin Kumar ◽  
Sujeet Kumar Mritunjay

Study highlights the metal removal efficiency and nutrient dynamics of three potent earthworm species from coal fly ash with a comparative aspect.


Sign in / Sign up

Export Citation Format

Share Document