scholarly journals Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities

RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 28029-28041
Author(s):  
Jayanta S. Boruah ◽  
Chayanika Devi ◽  
Upasana Hazarika ◽  
P. Vijaya Bhaskar Reddy ◽  
Devasish Chowdhury ◽  
...  

Gold nanoparticles are one of the widely used metallic nanoparticle having unique surface plasmon characteristic, offers major utility in biomedical and therapeutic fields.

2019 ◽  
Vol 31 (2) ◽  
pp. 463-477 ◽  
Author(s):  
Ningaraju Sunayana ◽  
Munawer Uzma ◽  
Rudra Prasad Dhanwini ◽  
Mellappa Govindappa ◽  
Harischandra Sripathy Prakash ◽  
...  

Author(s):  
Shaileshkumar C Kotval

In this study, green synthesis of gold nanoparticles were success fully synthesised by using <em>Adina cordifolia</em> plant bark aqueous extract which provides eco-friendly process, an environmentally benign, easy and proficient way for the synthesis of gold nanoparticles. The smaller size of gold nanoparticles have research on various dieses are very important. The green synthesized gold nanoparticles were characterized by UV-Visible spectroscopy, FT-IR, XRD, SEM, TEM and their antimicrobial activity was investigated. From UV-Visible spectrophotometer result was confirmed the formation of gold nanoparticles by color changed to ruby red color from pale yellow color indicates the reduction of Au<sup>3+</sup> ions to Au<sup>o</sup>. The antibacterial activity for the synthesized gold nanoparticles was confirmed by the antibacterial activity experiment against <em>Bacillus subtilis </em>and <em>Escherichia coli</em> by agar well method. The synthesized AuNPs was performed anticancer activity against MCF-7 breast cancer cell line. Compared to Adriamycin, Positive Control Compound AuNPs exhibited potent anticancer activity with the IC<sub>50</sub>. The green synthesized gold nanoparticles proved to be potential candidates for medical application antimicrobial and anticancer activity is highly essential.


Bioimpacts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 217-226
Author(s):  
Maryam Asariha ◽  
Azam Chahardoli ◽  
Farshad Qalekhani ◽  
Mahnaz Ghowsi ◽  
Mehdi Fouladi ◽  
...  

introduction: The application of gold nanoparticles (GNPs) in medicine is expanding as an effective therapeutic and diagnostic compound. Different polysaccharides with high biocompatibility and hydrophilic properties have been used for synthesis and capping of GNPs. Chondroitin sulfate (CHS) as a polysaccharide possesses a wide range of biological functions e.g. anti-oxidant, anti-inflammation, anti-coagulation, anti-atherosclerosis, anti-thrombosis with insignificant immunogenicity and has not been used for the green synthesis of GNPs. Methods: GNPs were synthesized using CHS, and their physicochemical properties were evaluated. The antibacterial activity of CHS-GNPs was estimated against both gram-positive and gram-negative bacteria. The cytotoxicity of CHS and CHS-GNPs was obtained by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test, and the electrocatalytic activity of CHS-GNPs was investigated. The blood compatibility was evaluated by the in vitro hemolysis assay. Results: The absorption band at 527 nm reveals the reduction of Au3+ into GNPs. The transmission electron microscopy (TEM) image displays the spherical shape of GNPs in the range of 5.8–31.4 nm. The CHS and CHS-GNPs at 300 µg/mL revealed a maximum DPPH (1, 1-diphenyl-2-picrylhydrazyl) scavenging activity of 73% and 65%, respectively. CHS-GNPs showed antibacterial activity against Bacillus subtilis, while CHS has no antibacterial activity. CHS-GNPs exhibited a cytotoxicity effect against MDA-MB-468 and βTC3 cancer cell lines, and the electrochemical study indicated a significant increase in electrocatalytic properties of CHS-GNPs coated electrode compared by the bare electrode. The hemolysis test proved the blood compatibility of CHS-GNPs. Conclusion: The results indicate the advantages of using CHS to produce blood-compatible GNPs with antioxidant, cytotoxic, and electrochemical properties.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 61-69
Author(s):  
D. S Randive ◽  
K. P. Shejawal ◽  
S. D Bhinge ◽  
M. A Bhutkar ◽  
P. D. Patil ◽  
...  

The aim of the present research was to perform green synthesis of gold nanoparticles of isolated citrus bioflavonoid from Citrus sinensis (orange) peel extract and to evaluate its anticancer potential. Methanolic extract of orange peel was obtained by Soxhlet extraction and citrus bioflavonoid was isolated by using column chromatography. Gold nanoparticles were developed by green synthesis method, wherein 1 % aqueous solution of isolated citrus bioflavonoid were mixed with 1% solution of HAuCl4 and incubated at ambient temperature for 4 to 5 hours and observed for the color change which indicated formation of nanoparticles. Obtained gold nanoparticles were evaluated by UV visible spectra, FTIR, SEM, XRD analysis and for antimicrobial potential against E coli, S.aureus and P. aeruginosa. Cytotoxicity study was carried out by using in vitro assays, namely MTT, SRB and Tryphan blue assay, against colon cancer cell line Colo 320 DM, and HT 29. results of SEM showed that nanosized particles in the range of 80-100nm were formed. Results of cytotoxicity studies revealed that CBFGNP exhibited 72.28% inhibition, against Colo320 DM whereas pure CBF showed 70.46% inhibition. Against HT 29, CBFGNP exhibited 69.79% inhibition, whereas for MTT assay and SRB assay, CBFGNP showed 80.15% and 58.29% inhibition, respectively. Moreover, CBFGNP exhibited 90.29% and 85% non viability against Colo320 DM and HT29. Based on the results, it can be concluded that gold nanoparticles of citrus bioflavonoid (CBFGNP) exhibits more cytotoxicity against Colo320 DM and HT29 as compared to pure citrus bioflavonoid when assessed by three different in vitro cytotoxicity assays.


2019 ◽  
Vol 13 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Natália M. Santos ◽  
Andressa S. Gomes ◽  
Dalita G.S.M. Cavalcante ◽  
Luis F. Santos ◽  
Silvio R. Teixeira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document