scholarly journals A new strategy for the green synthesis of chondroitin sulfate-reduced gold nanoparticles; in vitro evaluation of synthesized nanoparticles

Bioimpacts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 217-226
Author(s):  
Maryam Asariha ◽  
Azam Chahardoli ◽  
Farshad Qalekhani ◽  
Mahnaz Ghowsi ◽  
Mehdi Fouladi ◽  
...  

introduction: The application of gold nanoparticles (GNPs) in medicine is expanding as an effective therapeutic and diagnostic compound. Different polysaccharides with high biocompatibility and hydrophilic properties have been used for synthesis and capping of GNPs. Chondroitin sulfate (CHS) as a polysaccharide possesses a wide range of biological functions e.g. anti-oxidant, anti-inflammation, anti-coagulation, anti-atherosclerosis, anti-thrombosis with insignificant immunogenicity and has not been used for the green synthesis of GNPs. Methods: GNPs were synthesized using CHS, and their physicochemical properties were evaluated. The antibacterial activity of CHS-GNPs was estimated against both gram-positive and gram-negative bacteria. The cytotoxicity of CHS and CHS-GNPs was obtained by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test, and the electrocatalytic activity of CHS-GNPs was investigated. The blood compatibility was evaluated by the in vitro hemolysis assay. Results: The absorption band at 527 nm reveals the reduction of Au3+ into GNPs. The transmission electron microscopy (TEM) image displays the spherical shape of GNPs in the range of 5.8–31.4 nm. The CHS and CHS-GNPs at 300 µg/mL revealed a maximum DPPH (1, 1-diphenyl-2-picrylhydrazyl) scavenging activity of 73% and 65%, respectively. CHS-GNPs showed antibacterial activity against Bacillus subtilis, while CHS has no antibacterial activity. CHS-GNPs exhibited a cytotoxicity effect against MDA-MB-468 and βTC3 cancer cell lines, and the electrochemical study indicated a significant increase in electrocatalytic properties of CHS-GNPs coated electrode compared by the bare electrode. The hemolysis test proved the blood compatibility of CHS-GNPs. Conclusion: The results indicate the advantages of using CHS to produce blood-compatible GNPs with antioxidant, cytotoxic, and electrochemical properties.

Author(s):  
Shaileshkumar C Kotval

In this study, green synthesis of gold nanoparticles were success fully synthesised by using <em>Adina cordifolia</em> plant bark aqueous extract which provides eco-friendly process, an environmentally benign, easy and proficient way for the synthesis of gold nanoparticles. The smaller size of gold nanoparticles have research on various dieses are very important. The green synthesized gold nanoparticles were characterized by UV-Visible spectroscopy, FT-IR, XRD, SEM, TEM and their antimicrobial activity was investigated. From UV-Visible spectrophotometer result was confirmed the formation of gold nanoparticles by color changed to ruby red color from pale yellow color indicates the reduction of Au<sup>3+</sup> ions to Au<sup>o</sup>. The antibacterial activity for the synthesized gold nanoparticles was confirmed by the antibacterial activity experiment against <em>Bacillus subtilis </em>and <em>Escherichia coli</em> by agar well method. The synthesized AuNPs was performed anticancer activity against MCF-7 breast cancer cell line. Compared to Adriamycin, Positive Control Compound AuNPs exhibited potent anticancer activity with the IC<sub>50</sub>. The green synthesized gold nanoparticles proved to be potential candidates for medical application antimicrobial and anticancer activity is highly essential.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


2019 ◽  
Vol 31 (2) ◽  
pp. 463-477 ◽  
Author(s):  
Ningaraju Sunayana ◽  
Munawer Uzma ◽  
Rudra Prasad Dhanwini ◽  
Mellappa Govindappa ◽  
Harischandra Sripathy Prakash ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 153 ◽  
Author(s):  
Balashanmugam P. ◽  
Mosa Christas K. ◽  
Kowsalya E.

Objective: The biogenic gold nanoparticles are considered to be extremely impressive for its wide range of applications in pharmaceutics and therapeutics. The present study was aimed at the biogenic synthesis of gold nanoparticles (AuNPs) from Marsilea quadrifolia aqueous extract and to investigate its antioxidant property and cytotoxic effect on human ovarian teratocarcinoma (PA-1) and lung adenocarcinoma (A549) cell lines.Methods: The biogenic AuNPs was synthesized using an aqueous extract of Marsilea quadrifolia. The synthesized biogenic AuNPs were characterized by ultraviolet (UV) visible spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). The biogenic AuNPs was assessed for its stability over a period of time and antioxidant activity. The cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines was studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.Results: The synthesized biogenic AuNPs showed peculiar ruby red color and a surface plasmon resonance (SPR) peak at 544 nm in the UV-Vis spectrum. The characterization of biogenic AuNPs by TEM, EDX and XRD revealed well dispersed spherical particles ranging from 10-40 nm and the presence of elemental gold and its crystalline nature, respectively. The AuNPs showed good stability and the scavenging activity at 50 μg/ml. The in vitro cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines recorded half maximal inhibitory concentration (IC50) of 45.88 μg/ml and 52.015 μg/ml, respectively.Conclusion: The biogenic AuNPs demonstrated superior antioxidant and antiproliferative activities against cancer cell lines.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 300 ◽  
Author(s):  
Jorge A Roacho-Pérez ◽  
Fernando G Ruiz-Hernandez ◽  
Christian Chapa-Gonzalez ◽  
Herminia G Martínez-Rodríguez ◽  
Israel A Flores-Urquizo ◽  
...  

Some medical applications of magnetic nanoparticles require direct contact with healthy tissues and blood. If nanoparticles are not designed properly, they can cause several problems, such as cytotoxicity or hemolysis. A strategy for improvement the biological proprieties of magnetic nanoparticles is their functionalization with biocompatible polymers and nonionic surfactants. In this study we compared bare magnetite nanoparticles against magnetite nanoparticles coated with a combination of polyethylene glycol 3350 (PEG 3350) and polysorbate 80 (Tween 80). Physical characteristics of nanoparticles were evaluated. A primary culture of sheep adipose mesenchymal stem cells was developed to measure nanoparticle cytotoxicity. A sample of erythrocytes from a healthy donor was used for the hemolysis assay. Results showed the successful obtention of magnetite nanoparticles coated with PEG 3350-Tween 80, with a spherical shape, average size of 119.2 nm and a zeta potential of +5.61 mV. Interaction with mesenchymal stem cells showed a non-cytotoxic propriety at doses lower than 1000 µg/mL. Interaction with erythrocytes showed a non-hemolytic propriety at doses lower than 100 µg/mL. In vitro information obtained from this work concludes that the use of magnetite nanoparticles coated with PEG 3350-Tween 80 is safe for a biological system at low doses.


2016 ◽  
Vol 52 (5) ◽  
pp. 966-969 ◽  
Author(s):  
Deepanjali Gurav ◽  
Oommen P. Varghese ◽  
Osama A. Hamad ◽  
Bo Nilsson ◽  
Jöns Hilborn ◽  
...  

We have developed the first chondroitin sulfate polymer coated gold nanoparticles that can simultaneously overcome mulidrug resistance in cancer cells and suppress thromboinflammation triggered by the chemotherapeutic drug.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Li Zhang ◽  
Yaoren Hu

Alphastatin is a 24-amino acid peptide and can suppress tumor angiogenesis by inhibiting both the migration and tubule formation of vascular endothelial cells. However, the anticancer effect of Alphastatin is limited due to the short half-life and degradation in the body. In this study, Alphastatin-loaded chitosan nanoparticles (AsCs NPs) were prepared with an initial concentration of 2 mg/ml for chitosan and 1 mg/ml for Alphastatin. AsCs NPs presented the encapsulation efficiency of 32.4%, the mean particle size of 387.4 nm, the polydispersity index of 0.223, and the zeta potential of +28.1 mV. AsCs NPs have a sustained release for 6 days and were stable in serum for at least 24 hours. And the NPs could preserve the integrity of encapsulated Alphastatin and released Alphastatin for 24 hours. In a subcutaneous LA975 lung carcinoma xenograft T739 mouse model, AsCs NPs significantly inhibited the tumor growth, tumor volume, and microvessel density (MVD), and the antitumor effect was even stronger than that of Alphastatin. In addition, the VEGF-induced tube formation of HUVEC could be inhibited by AsCs NPs in vitro and the serum containing AsCs NPs, and the protein level of SphK1 in HUVEC was also decreased by AsCs NPs, suggesting an inhibitory effect of AsCs NPs on the SphK1-S1P signaling pathway. Furthermore, hemolysis assay showed a safety on blood compatibility of AsCs NPs. Our study indicated that AsCs NPs inhibited the SphK1-S1P signaling pathway and enhanced the antiangiogenic effect of Alphastatin both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document