scholarly journals Green Synthesis of Gold Nanoparticles using Adina Cordifolia Bark Extract and its Antimicrobial and in Vitro Anticancer Study

Author(s):  
Shaileshkumar C Kotval

In this study, green synthesis of gold nanoparticles were success fully synthesised by using <em>Adina cordifolia</em> plant bark aqueous extract which provides eco-friendly process, an environmentally benign, easy and proficient way for the synthesis of gold nanoparticles. The smaller size of gold nanoparticles have research on various dieses are very important. The green synthesized gold nanoparticles were characterized by UV-Visible spectroscopy, FT-IR, XRD, SEM, TEM and their antimicrobial activity was investigated. From UV-Visible spectrophotometer result was confirmed the formation of gold nanoparticles by color changed to ruby red color from pale yellow color indicates the reduction of Au<sup>3+</sup> ions to Au<sup>o</sup>. The antibacterial activity for the synthesized gold nanoparticles was confirmed by the antibacterial activity experiment against <em>Bacillus subtilis </em>and <em>Escherichia coli</em> by agar well method. The synthesized AuNPs was performed anticancer activity against MCF-7 breast cancer cell line. Compared to Adriamycin, Positive Control Compound AuNPs exhibited potent anticancer activity with the IC<sub>50</sub>. The green synthesized gold nanoparticles proved to be potential candidates for medical application antimicrobial and anticancer activity is highly essential.

Bioimpacts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 217-226
Author(s):  
Maryam Asariha ◽  
Azam Chahardoli ◽  
Farshad Qalekhani ◽  
Mahnaz Ghowsi ◽  
Mehdi Fouladi ◽  
...  

introduction: The application of gold nanoparticles (GNPs) in medicine is expanding as an effective therapeutic and diagnostic compound. Different polysaccharides with high biocompatibility and hydrophilic properties have been used for synthesis and capping of GNPs. Chondroitin sulfate (CHS) as a polysaccharide possesses a wide range of biological functions e.g. anti-oxidant, anti-inflammation, anti-coagulation, anti-atherosclerosis, anti-thrombosis with insignificant immunogenicity and has not been used for the green synthesis of GNPs. Methods: GNPs were synthesized using CHS, and their physicochemical properties were evaluated. The antibacterial activity of CHS-GNPs was estimated against both gram-positive and gram-negative bacteria. The cytotoxicity of CHS and CHS-GNPs was obtained by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) test, and the electrocatalytic activity of CHS-GNPs was investigated. The blood compatibility was evaluated by the in vitro hemolysis assay. Results: The absorption band at 527 nm reveals the reduction of Au3+ into GNPs. The transmission electron microscopy (TEM) image displays the spherical shape of GNPs in the range of 5.8–31.4 nm. The CHS and CHS-GNPs at 300 µg/mL revealed a maximum DPPH (1, 1-diphenyl-2-picrylhydrazyl) scavenging activity of 73% and 65%, respectively. CHS-GNPs showed antibacterial activity against Bacillus subtilis, while CHS has no antibacterial activity. CHS-GNPs exhibited a cytotoxicity effect against MDA-MB-468 and βTC3 cancer cell lines, and the electrochemical study indicated a significant increase in electrocatalytic properties of CHS-GNPs coated electrode compared by the bare electrode. The hemolysis test proved the blood compatibility of CHS-GNPs. Conclusion: The results indicate the advantages of using CHS to produce blood-compatible GNPs with antioxidant, cytotoxic, and electrochemical properties.


2019 ◽  
Vol 9 (4) ◽  
pp. 512-518
Author(s):  
Karthikeyan Muthu ◽  
Blessy Vijayakumar ◽  
Thirumurugan Alagu

Introduction: Cancer is one of the current leading cause of death all over the world. Among the various emerging technologies, nanotechnology plays a prominent role in delivering the drug to the target region. Materials and Methods: In this study, the In vitro effect of doxorubicin adsorbed gold nanoparticles synthesized by Azadirachta Indica leaves extract as reducing agent and the doxorubicin entrapped modified liposomes called transfersomes was compared over the cervical cancer cell line (HeLa cell lines). The synthesized gold nanoparticles were characterized using a UV-visible spectrophotometer, SEM analysis. Results: The UV-Visible spectrum showed the peak at 537nm and the incorporation of drug over the nanoparticles was conformed using FTIR and SEM analysis. The drug entrapment onto transfersomes was also characterized using FTIR and SEM analysis. When compared, the drug entrapped transfersomes shows significant effect with the lowest concentration of drug (0.25 µg/mL) than the drug adsorbed nanoparticles. Conclusion: Hence, the transfersomes may also become the promising drug carrier in the future.


RSC Advances ◽  
2016 ◽  
Vol 6 (68) ◽  
pp. 63973-63983 ◽  
Author(s):  
Abolghasem Abbasi Kajani ◽  
Abdol-Khalegh Bordbar ◽  
Sayyed Hamid Zarkesh Esfahani ◽  
Amir Razmjou

High quality colloidal gold nanoparticles with promising anticancer activity were synthesized using Taxus baccata extracts.


2018 ◽  
Vol 10 (4) ◽  
pp. 162
Author(s):  
Madhumithra S. K. ◽  
Balashanmugam P. ◽  
Mosachristas K. ◽  
Tamil Selvi A. ◽  
Subashini R.

Objective: To synthesize the gold nanoparticles by a biological method using the extract obtained from the shells of Pistacia vera (P. vera) and to study its effective role in the anticancer activity.Methods: The synthesis of gold nanoparticles using the extract obtained from the shells of Pistacia vera was confirmed by the color change and substantiating the same using ultraviolet (UV) visible spectroscopy. The size and the shape of the particles were studied using field emission scanning electron microscopy (FESEM). The stability of the nanoparticles was assessed by using the UV visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR). The anticancer activity of the gold nanoparticles on the cancer cell lines was studied on PA1 ovarian cancer cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nature of cell death was analyzed using the fluorescence microscopy.Results: The ruby red color confirmed the formation of gold nanoparticles and it was substantiated by the absorption peak at 543.2 nm in the UV visible spectroscopy. The gold nanoparticles synthesized from the Pistacia vera shell showed the spherical shape and were in the size of around 10-40 nm when analyzed with FESEM. The different functional groups were indicated in the FTIR spectra which were consisting of phenol, alcohol, alkenes and aromatics.Conclusion: The synthesis of the gold nanoparticle using the extract obtained from the shells of Pistacia vera has effective anticancer activity.


2021 ◽  
Vol 65 (3) ◽  
Author(s):  
Zainab ◽  
Khalid Saeed ◽  
Ammara ◽  
Shujaat Ahmad ◽  
Hanif Ahmad ◽  
...  

Abstract. The green synthesis of gold nanoparticles (Au NPs) from their precursor was carried out using Delphinium uncinatum and Erythrophyleum guineense plants extracts. The Au NPs obtained were characterized by various instrumental techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and UV/Visible (UV/VIS) spectrophotometer. The SEM study presented that E. guineense (GE) and D. uncinatum (GN) synthesized gold nanoparticles was below 100 and 300 nm, respectively.  The micrographs also presented that E. guineense (GE) synthesized gold particles had irregular round shaped while the D. uncinatum (GN) synthesized nanoparticles had cylindrical shaped. The XRD spectra presented peaks at about 38.1°, 44.43°, 64.6° and 77.64° can be indexed to (111), (200), (220) and (311) orientation, respectively, which confirmed the presence of gold nanoparticles. It means that both E. guineense (GE) and D. uncinatum (GN) synthesized gold nanoparticles are highly crystalline.  The UV/VIS analysis presented that both plant extracts significantly reduced the gold slat and as a result high quantity of gold nanoparticles were formed. The E. guanense gold NP and D. uncinatum gold NPs were investigated for their in-vitro cholinesterases inhibitory potentials in 62.5-1000 µg/mL concentrations range. The bioactivity results presented that the loading of the test samples in gold NPs enhanced their AChE and BChE inhibitory potentials.   Resumen. La síntesis verde de nanopartículas de oro (NP de Au) se llevó a cabo mediante extractos de plantas de Delphinium uncinatum y Erythrophyleum guineense. Las NP de Au obtenidas se caracterizaron mediante diversas técnicas instrumentales como microscopía electrónica de barrido (SEM), dispersión de energía de rayos X (EDX), difracción de rayos X (XRD) y espectrofotómetro UV / Visible (UV / Vis). El estudio SEM reveló tamaños de las nanopartículas de oro sintetizadas por E. guineense (GE) y D. uncinatum (GN) por debajo de 100 y 300 nm, respectivamente. Las micrografías también mostraron que las partículas de oro sintetizadas por E. guineense (GE) tenían una forma redonda irregular, mientras que las nanopartículas sintetizadas por D. uncinatum (GN) tenían una forma cilíndrica. Los patrones XRD presentaron picos a aproximadamente 38.1 °, 44.43 °, 64.6 ° y 77.64 ° pueden indexarse ​​a la orientación (111), (200), (220) y (311), respectivamente, lo que confirmó la presencia de nanopartículas de oro cristalinas. El análisis UV / Vis mostró que ambos extractos de plantas formaron nanopartículas de oro. Se investigaron las NP de oro como inhibidores de colinesterasas in vitro en un intervalo de concentraciones de 62.5 a 1000 µg / ml. Los resultados de la bioactividad mostraron que la carga de las muestras de prueba en NP de oro mejoró sus potenciales inhibidores de AChE y BChE.


Sign in / Sign up

Export Citation Format

Share Document