scholarly journals Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1310-1318
Author(s):  
Kotoe Ichihashi ◽  
Masakazu Umezawa ◽  
Yuichi Ueya ◽  
Kyohei Okubo ◽  
Eiji Takamoto ◽  
...  

The enantiomeric structure of PLA affects its affinity for OTN-NIR fluorescent IR-1061 dye and its robustness when forming hydrophobic core micelles.

RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18930-18937
Author(s):  
Yuichi Ueya ◽  
Masakazu Umezawa ◽  
Eiji Takamoto ◽  
Moe Yoshida ◽  
Hisanori Kobayashi ◽  
...  

By changing the ratio of acrylic acid to styrene, the loading amount of fluorescent dye can be increased and the optical properties of the resulting bioimaging probe can be improved.


Acta Naturae ◽  
2014 ◽  
Vol 6 (4) ◽  
pp. 54-59 ◽  
Author(s):  
S. S. Terekhov ◽  
I. V. Smirnov ◽  
O. G. Shamborant ◽  
M. A. Zenkova ◽  
E. L Chernolovskaya ◽  
...  

Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging.


2019 ◽  
Vol 4 (32) ◽  
pp. eaax0613 ◽  
Author(s):  
Zhiguang Wu ◽  
Lei Li ◽  
Yiran Yang ◽  
Peng Hu ◽  
Yang Li ◽  
...  

Recently, tremendous progress in synthetic micro/nanomotors in diverse environment has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT)–guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules are stable in the stomach and exhibit efficient propulsion in various biofluids once released. The migration of micromotor capsules toward the targeted regions in intestines has been visualized by PACT in real time in vivo. Near-infrared light irradiation induces disintegration of the capsules to release the cargo-loaded micromotors. The intensive propulsion of the micromotors effectively prolongs the retention in intestines. The integration of the newly developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo and promises practical biomedical applications, such as drug delivery.


2020 ◽  
Vol 307 ◽  
pp. 127652 ◽  
Author(s):  
Jiaojiao Yang ◽  
Mengting Fan ◽  
Yan Sun ◽  
Mengyuan Zhang ◽  
Yuting Xue ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yusaku Hontani ◽  
Mikhail Baloban ◽  
Francisco Velazquez Escobar ◽  
Swetta A. Jansen ◽  
Daria M. Shcherbakova ◽  
...  

AbstractNear-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C–S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.


Sign in / Sign up

Export Citation Format

Share Document