scholarly journals Parasitic Behavior in Competing Chemically Fueled Reaction Cycles

2021 ◽  
Author(s):  
Patrick S. Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase...

2021 ◽  
Author(s):  
Patrick Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when such reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of such assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.


2021 ◽  
Author(s):  
Patrick Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when such reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of such assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.


2019 ◽  
Author(s):  
Nishant Singh ◽  
Bruno Lainer ◽  
Georges Formon ◽  
Serena De Piccoli ◽  
Thomas Hermans

Nature uses catalysis as an indispensable tool to control assembly and reaction cycles in vital non-equilibrium supramolecular processes. For instance, enzymatic methionine oxidation regulates actin (dis)assembly, and catalytic guanosine triphosphate hydrolysis is found in tubulin (dis)assembly. Here we present a completely artificial reaction cycle which is driven by a chemical fuel that is catalytically obtained from a ‘pre-fuel’. The reaction cycle controls the disassembly and re-assembly of a hydrogel, where the rate of pre-fuel turnover dictates the morphology as well as the mechanical properties. By adding additional fresh aliquots of fuel and removing waste, the hydrogels can be re-programmed time after time. Overall, we show how catalysis can control fuel generation to control reaction / assembly kinetics and materials properties in life-like non-equilibrium systems.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 814 ◽  
Author(s):  
Josep M. Ribó ◽  
David Hochberg

Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.


The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is often slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given system can be combined and displayed in the form of a ‘supplemented phase diagram’, the latter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporates equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on model systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing - thawing survival of living cells.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e39849 ◽  
Author(s):  
Andrea De Martino ◽  
Daniele De Martino ◽  
Roberto Mulet ◽  
Guido Uguzzoni

Sign in / Sign up

Export Citation Format

Share Document