scholarly journals Parasitic Behavior in Competing Chemically Fueled Reaction Cycles

Author(s):  
Patrick Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when such reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of such assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.

2021 ◽  
Author(s):  
Patrick Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when such reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of such assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.


2021 ◽  
Author(s):  
Patrick S. Schwarz ◽  
Sudarshana Laha ◽  
Jacqueline Janssen ◽  
Tabea Huss ◽  
Job Boekhoven ◽  
...  

Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase...


2011 ◽  
Vol 11 (10) ◽  
pp. 29141-29194 ◽  
Author(s):  
M. Song ◽  
C. Marcolli ◽  
U. K. Krieger ◽  
A. Zuend ◽  
T. Peter

Abstract. Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS) and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7) having oxygen-to-carbon atomic ratios (O:C) of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS). With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR) using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH), each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50% to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C<0.7 in tropospheric organic-inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such morphologies might also exist in tropospheric aerosols.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2145
Author(s):  
Maria Quevedo ◽  
Heike P. Karbstein ◽  
M. Azad Emin

In this study, the influence of defined extrusion-like treatment conditions on the denaturation behavior and kinetics of single- and multi-component protein model systems at a protein concentration of 70% (w/w) was investigated. α-Lactalbumin (αLA) and β-Lactoglobulin (βLG), and whey protein isolate (WPI) were selected as single- and multi-component protein model systems, respectively. To apply defined extrusion-like conditions, treatment temperatures in the range of 60 and 100 °C, shear rates from 0.06 to 50 s⁻1, and treatment times up to 90 s were chosen. While an aggregation onset temperature was determined at approximately 73 °C for WPI systems at a shear rate of 0.06 s⁻1, two significantly different onset temperatures were determined when the shear rate was increased to 25 and 50 s⁻1. These two different onset temperatures could be related to the main fractions present in whey protein (βLG and αLA), suggesting shear-induced phase separation. Application of additional mechanical treatment resulted in an increase in reaction rates for all the investigated systems. Denaturation was found to follow 2.262 and 1.865 order kinetics for αLA and WPI, respectively. The reaction order of WPI might have resulted from a combination of a lower reaction order in the unsheared system (i.e., fractional first order) and higher reaction order for sheared systems, probably due to phase separation, leading to isolated behavior of each fraction at the local level (i.e., fractional second order).


2018 ◽  
Author(s):  
Yanfei Jiang ◽  
Guy M. Genin ◽  
Kenneth M. Pryse ◽  
Elliot L. Elson

AbstractGiant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) are synthetic model systems widely used in biophysical studies of lipid membranes. Phase separation behaviors of lipid species in these two model systems differ due to the lipid-substrate interactions that are present only for SLBs. Therefore, GUVs are believed to resemble natural cell membranes more closely, and a very large body of literature focuses on applying nano-characterization techniques to quantify phase separation on GUVs. However, one important technique, atomic force microscopy (AFM), has not yet been used successfully to study phase separation on GUVs. In the present study, we report that in binary systems, certain phase domains on GUVs retain their original shapes and patterns after the GUVs rupture on glass surfaces. This enabled AFM experiments on phase domains from binary GUVs containing 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). These DLPC/DSPC and DLPC/DPPC GUVs both presented two different gel phases, one of which (bright phase) included a relatively high concentration of DiI-C20 but excluded Bodipy-HPC, and the other of which (dark phase) excluded both probes. The bright phases are of interest because they seem to stabilize dark phases against coalescence. Results suggested that the gel phases labeled by DiI-C20 in the DLPC/DSPC membrane, which surround the dark gel phase, is an extra layer of membrane, indicating a highly curved structure that might stabilize the interior dark domains. This phenomenon was not found in the DLPC/DPPC membrane. These results show the utility of AFM on collapsed GUVs, and suggest a possible mechanism for stabilization of lipid domains.


2016 ◽  
Vol 88 (5) ◽  
pp. 2847-2855 ◽  
Author(s):  
Vic Spicer ◽  
Peyman Ezzati ◽  
Haley Neustaeter ◽  
Ronald C. Beavis ◽  
John A. Wilkins ◽  
...  

2019 ◽  
Vol 4 (3) ◽  
pp. 627-633 ◽  
Author(s):  
Yuki Kohno ◽  
Takashi Makino ◽  
Mitsuhiro Kanakubo

Phase separation of products from ionic liquid catalysts promotes the equilibrium reaction to prepare long-chain wax esters at moderate temperatures.


2009 ◽  
Vol 424 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Ilya Levental ◽  
Fitzroy J. Byfield ◽  
Pramit Chowdhury ◽  
Feng Gai ◽  
Tobias Baumgart ◽  
...  

Cell-derived GPMVs (giant plasma-membrane vesicles) enable investigation of lipid phase separation in a system with appropriate biological complexity under physiological conditions, and in the present study were used to investigate the cholesterol-dependence of domain formation and stability. The cholesterol level is directly related to the abundance of the liquid-ordered phase fraction, which is the majority phase in vesicles from untreated cells. Miscibility transition temperature depends on cholesterol and correlates strongly with the presence of detergent-insoluble membrane in cell lysates. Fluorescence correlation spectroscopy reveals two distinct diffusing populations in phase-separated cell membrane-derived vesicles whose diffusivities correspond well to diffusivities in both model systems and live cells. The results of the present study extend previous observations in purified lipid systems to the complex environment of the plasma membrane and provide insight into the effect of cholesterol on lipid phase separation and abundance.


Sign in / Sign up

Export Citation Format

Share Document