CYLINDRICAL CONFINEMENT OF SOLUTIONS CONTAINING SEMIFLEXIBLE MACROMOLECULES: SURFACE-INDUCED NEMATIC ORDER VERSUS PHASE SEPARATION

Soft Matter ◽  
2021 ◽  
Author(s):  
Andrey Ivanov Milchev ◽  
Kurt Binder

Solutions of semiflexible polymers confined in cylindrical pores with repulsive walls are studied by Molecular Dynamics simulations for a wide range of polymer concentrations. Both the case where both lengths...

2015 ◽  
Vol 13 (10) ◽  
pp. 3070-3085 ◽  
Author(s):  
Miguel M. Santos ◽  
Igor Marques ◽  
Sílvia Carvalho ◽  
Cristina Moiteiro ◽  
Vítor Félix

The binding affinity of a dichlorocalix[2]arene[2]triazine based bis-urea azamacrocycle was investigated towards a wide range of bio-relevant dicarboxylate anions by a combination of 1H NMR titrations in CDCl3 and molecular dynamics simulations.


Author(s):  
James Cannon ◽  
Daejoong Kim ◽  
Shigeo Maruyama ◽  
Junichiro Shiomi

Osmosis plays an essential role in a wide range of phenomena, and therefore it is useful to understand how to manipulate the rate at which osmosis occurs. In the present study we conduct molecular dynamics simulations to consider the influence of solute size on the osmotic pressure gradient which drives the flow. Our results show how selective choice of the size of the solute can enhance, or hinder, the establishment of a strong osmotic gradient.


Author(s):  
Asegun Henry ◽  
Gang Chen

We used molecular dynamics simulations to calculate the thermal conductivity of polyethylene chains, by employing the widely used Green-Kubo formula. The simulations use the AIREBO potential and employ periodic boundary conditions to mimic the dynamics of an infinite chain. In this limiting case, we observed that when the simulation domain is large enough the thermal conductivity diverges. The results suggest that single polymer chains intrinsically have high thermal conductivity. Although polymers are generally known to have low thermal conductivity, our observation of divergent thermal conductivity in a single chain suggests that high thermal conductivity polymer materials can be engineered, which would be of interest to a wide range of applications.


2018 ◽  
Vol 53 (9) ◽  
pp. 1261-1274 ◽  
Author(s):  
Jafar Amraei ◽  
Jafar E Jam ◽  
Behrouz Arab ◽  
Roohollah D Firouz-Abadi

In the current work, the effect of interphase region on the mechanical properties of polymer nanocomposites reinforced with nanoparticles is studied. For this purpose, a closed-form interphase model as a function of radial distance based on finite-size representative volume element is suggested to estimate the mechanical properties of particle-reinforced nanocomposites. The effective Young’s and shear moduli of thermoplastic polycarbonate-based nanocomposites for a wide range of sizes and volume fractions of silicon carbide nanoparticles are investigated using the proposed interphase model and molecular dynamics simulations. In order to investigate the effect of particle size, several unit cells of the same volume fraction, but with different particle radii have been considered. The micromechanics-based homogenization results are in good agreement with the results of molecular dynamics simulations for all models. This study demonstrates that the suggested micromechanical interphase model has the capacity to estimate effective mechanical properties of polymer-based nanocomposites reinforced with spherical inclusions.


2007 ◽  
Vol 539-543 ◽  
pp. 3528-3533
Author(s):  
X.W. Zhou ◽  
D.A. Murdick ◽  
B. Gillespie ◽  
J.J. Quan ◽  
Haydn N.G. Wadley ◽  
...  

The atomic-scale structures and properties of thin films are critically determined by the various kinetic processes activated during their atomic assembly. Molecular dynamics simulations of growth allow these kinetic processes to be realistically addressed at a timescale that is difficult to reach using ab initio calculations. The newest approaches have begun to enable the growth simulation to be applied for a wide range of materials. Embedded atom method potentials can be successfully used to simulate the growth of closely packed metal multilayers. Modified charge transfer ionic + embedded atom method potentials are transferable between metallic and ionic materials and have been used to simulate the growth of metal oxides on metals. New analytical bond order potentials are now enabling significantly improved molecular dynamics simulations of semiconductor growth. Selected simulations are used to demonstrate the insights that can be gained about growth processes at surfaces.


Sign in / Sign up

Export Citation Format

Share Document