Ultrafast reproducible synthesis of an Agnanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow

Author(s):  
Ana Arenas-Vivo ◽  
Sara Rojas ◽  
Ivan Ocaña ◽  
Ana Torres ◽  
Marta Liras ◽  
...  

The (photo)catalytical properties of Metal-Organic Frameworks (MOFs) can be enhanced by postsynthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous...

2013 ◽  
Vol 4 (4) ◽  
pp. 1781 ◽  
Author(s):  
Richard Luis Martin ◽  
Maciej Haranczyk

2014 ◽  
Vol 137 (1) ◽  
pp. 413-419 ◽  
Author(s):  
Tian-Fu Liu ◽  
Dawei Feng ◽  
Ying-Pin Chen ◽  
Lanfang Zou ◽  
Mathieu Bosch ◽  
...  

2021 ◽  
Author(s):  
Yu Yan ◽  
Reza Abazari ◽  
Juming Yao ◽  
Junkuo Gao

Metal-organic frameworks (MOFs) are micro/mesoporous crystalline materials with high surface area, tunability, and compositional diversity which have been widely applied in diverse applications, including catalysis. The rigid framework built from...


2021 ◽  
Vol 22 (19) ◽  
pp. 10412
Author(s):  
Huiping Chen ◽  
Yongpan Shan ◽  
Lidong Cao ◽  
Pengyue Zhao ◽  
Chong Cao ◽  
...  

Long-term use of a single fungicide increases the resistance risk and causes adverse effects on natural ecosystems. Controlled release formulations of dual fungicides with different modes of action can afford a new dimension for addressing the current issues. Based on adjustable aperture and superhigh surface area, metal–organic frameworks (MOFs) are ideal candidates as pesticide release carriers. This study used Al3+ as the metal node and 2-aminoterephthalic acid as the organic chain to prepare aluminum-based metal–organic framework material (NH2-Al-MIL-101) with “cauliflower-like” structure and high surface area of 2359.0 m2/g. Fungicides of azoxystrobin (AZOX) and diniconazole (Dini) were simultaneously encapsulated into NH2-Al-MIL-101 with the loading content of 6.71% and 29.72%, respectively. Dual fungicide delivery system of AZOX@Dini@NH2-Al-MIL-101 demonstrated sustained and pH responsive release profiles. When the maximum cumulative release rate of AZOX and Dini both reached about 90%, the release time was 46 and 136 h, respectively. Furthermore, EC50 values as well as the percentage of inhibition revealed that AZOX@Dini@NH2-Al-MIL-101 had enhanced germicidal efficacy against rice sheath blight (Rhizoctonia solani), evidenced by the synergistic ratio of 1.83. The present study demonstrates a potential application prospect in sustainable plant protection through co-delivery fungicides with MOFs as a platform.


2017 ◽  
Vol 9 (14) ◽  
pp. 12584-12591 ◽  
Author(s):  
Timothy C. Wang ◽  
Idan Hod ◽  
Cornelius O. Audu ◽  
Nicolaas A. Vermeulen ◽  
SonBinh T. Nguyen ◽  
...  

2017 ◽  
Vol 5 (43) ◽  
pp. 22500-22505 ◽  
Author(s):  
Hyunhee Lee ◽  
Seul Chan Park ◽  
Ji Soo Roh ◽  
Gi Hyeon Moon ◽  
Jae Eun Shin ◽  
...  

A new concept of nanocomposites, MOFs on porous two-dimensional nanosheets (MP2), was demonstrated and showed great potential in real gas separation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2091
Author(s):  
Ngo Minh Phuoc ◽  
Euiyeon Jung ◽  
Nguyen Anh Thu Tran ◽  
Young-Woo Lee ◽  
Chung-Yul Yoo ◽  
...  

Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.


Sign in / Sign up

Export Citation Format

Share Document