Thionated Benzo[c]thiophen-1(3H)-one as Organic Cathodes with High Capacity for Sulfur-rich All Organic Lithium-ion Battery

Author(s):  
Bingjie Zhang ◽  
Xiaodong Yang ◽  
Ben He ◽  
Qiqi Wang ◽  
Zishun Liu ◽  
...  

Organic materials have potential advantages in lithium-ion batteries (LIBs) due to their environmental friendliness, flexible designability, and high theoretical capacity. However, the commonly low electrical conductivity and high solubility of...

NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050076
Author(s):  
Fang Sun ◽  
Zhiyuan Tan ◽  
Zhengguang Hu ◽  
Jun Chen ◽  
Jie Luo ◽  
...  

Silicon is widely studied as a high-capacity lithium-ion battery anode. However, the pulverization of silicon caused by a large volume expansion during lithiation impedes it from being used as a next generation anode for lithium-ion batteries. To overcome this drawback, we synthesized ultrathin silicon nanowires. These nanowires are 1D silicon nanostructures fabricated by a new bi-metal-assisted chemical etching process. We compared the lithium-ion battery properties of silicon nanowires with different average diameters of 100[Formula: see text]nm, 30[Formula: see text]nm and 10[Formula: see text]nm and found that the 30[Formula: see text]nm ultrathin silicon nanowire anode has the most stable properties for use in lithium-ion batteries. The above anode demonstrates a discharge capacity of 1066.0[Formula: see text]mAh/g at a current density of 300[Formula: see text]mA/g when based on the mass of active materials; furthermore, the ultrathin silicon nanowire with average diameter of 30[Formula: see text]nm anode retains 87.5% of its capacity after the 50th cycle, which is the best among the three silicon nanowire anodes. The 30[Formula: see text]nm ultrathin silicon nanowire anode has a more proper average diameter and more efficient content of SiOx. The above prevents the 30[Formula: see text]nm ultrathin silicon nanowires from pulverization and broken during cycling, and helps the 30[Formula: see text]nm ultrathin silicon nanowires anode to have a stable SEI layer, which contributes to its high stability.


2018 ◽  
Vol 5 (6) ◽  
pp. 172370 ◽  
Author(s):  
Xuyan Liu ◽  
Xinjie Zhu ◽  
Deng Pan

Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon–carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon–carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon–carbon anode materials through different perspectives.


2019 ◽  
Vol 55 (3) ◽  
pp. 361-364 ◽  
Author(s):  
Donghee Gueon ◽  
Jun Hyuk Moon

We report simple yet rationally designed, polydopamine-wrapped, silicon nanoparticle-impregnated macroporous CNT particles for high-capacity lithium-ion batteries.


Author(s):  
Huan L. Pham ◽  
J. Eric Dietz ◽  
Douglas E. Adams ◽  
Nathan D. Sharp

With their superior advantages of high capacity and low percentage of self-discharge, lithium-ion batteries have become the most popular choice for power storage in electric vehicles. Due to the increased potential for long life of lithium-ion batteries in vehicle applications, manufacturers are pursuing methodologies to increase the reliability of their batteries. This research project is focused on utilizing non-destructive vibration diagnostic testing methods to monitor changes in the physical properties of the lithium-ion battery electrodes, which dictate the states of charge (SOC) and states of health (SOH) of the battery cell. When the battery cell is cycled, matter is transported from one electrode to another which causes mechanical properties such as thickness, mass, stiffness of the electrodes inside a battery cell to change at different states of charge; therefore, the detection of these changes will serve to determine the state of charge of the battery cell. As mass and stiffness of the electrodes change during charge and discharge, they will respond to the excitation input differently. An automated vibration diagnostic test is developed to characterize the state of charge of a lithium-ion battery cell by measuring the amplitude and phase of the kinematic response as a function of excitation frequency at different states of charge of the battery cell and at different times in the life of the cell. Also, the mechanical properties of the electrodes at different states of charge are obtained by direct measurements to develop a first-principles frequency response model for the battery cell. The correlation between the vibration test results and the model will be used to determine the state of charge of the cell.


RSC Advances ◽  
2015 ◽  
Vol 5 (18) ◽  
pp. 13964-13971 ◽  
Author(s):  
Md. Selim Arif Sher Shah ◽  
Shoaib Muhammad ◽  
Jong Hyeok Park ◽  
Won-Sub Yoon ◽  
Pil J. Yoo

A conducting polymer matrix of PEDOT:PSS is incorporated into SnO2/reduced graphene oxide composite for increasing the stability of lithium-ion battery anodes.


RSC Advances ◽  
2016 ◽  
Vol 6 (92) ◽  
pp. 89176-89180 ◽  
Author(s):  
Dohyoung Kwon ◽  
Sinho Choi ◽  
Guoxiu Wang ◽  
Soojin Park

Cu-incorporated porous Ge-based anodes with high electrical conductivity are prepared by a simple carbothermic reduction process of CuGeO3. The Cu–Ge-based anodes exhibit outstanding capacity retention at 25 °C and 60 °C.


2015 ◽  
Vol 51 (60) ◽  
pp. 12118-12121 ◽  
Author(s):  
Mengyao Gao ◽  
Naiqiang Liu ◽  
Yilei Chen ◽  
Yuepeng Guan ◽  
Weikun Wang ◽  
...  

Graphite with a large inter-planar distance (0.357 nm), obtained from pig bone, delivered an continuously improving specific capacity when used as a lithium-ion battery anode.


2013 ◽  
Vol 737 ◽  
pp. 80-84 ◽  
Author(s):  
Arenst Andreas Arie ◽  
Joong Kee Lee

Silicon would seem to be a possible candidate to replace graphite or carbon as anode materials for lithium ion batteries based on its potential high capacity of 4200 mAhg-1. The main problem that must be solved for commercial application of silicon as anode material was the poor cyclic performance due to severe volume expansion during repeated charged-discharged cycles and its low electrical conductivity. In this work, we proposed Phosphorus doped (P-doped) Si films as anodes in lithium ion batteries. The electrochemical properties of the silicon based electrodes were examined by means of charge-discharge and impedance test. In comparison with the bare silicon electrode, the P type silicon electrode exhibited higher specific capacity of 2585 mAhg-1 until the 50th cycle. It was attributed to the improved electrical conductivity of Si film and reduced charge transfer resistance


2015 ◽  
Vol 3 (7) ◽  
pp. 3522-3528 ◽  
Author(s):  
Xinghua Chang ◽  
Wei Li ◽  
Junfeng Yang ◽  
Li Xu ◽  
Jie Zheng ◽  
...  

One step plasma deposited Si/C nanocomposites as high capacity, high stability lithium ion battery anodes.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhigang Li ◽  
Zhongxiang Guan ◽  
Zhiping Guan ◽  
Ce Liang ◽  
Kaifeng Yu

Abstract The cryogenic process has been widely applied in various fields, but it has rarely been reported in the preparation of anode materials for lithium-ion battery. In this paper, activated carbon derived from hemp stems was prepared by carbonization and activation; then, it was subjected to cryogenic treatment to obtain cryogenic activated carbon. The characterization results show that the cryogenic activated carbon (CAC) has a richer pore structure than the activated carbon (AC) without cryogenic treatment, and its specific surface area is 1727.96 m2/g. The porous carbon had an excellent reversible capacity of 756.8 mAh/g after 100 cycles at 0.2 C as anode of lithium-ion battery, in which the electrochemical performance of CAC was remarkably improved due to its good pore structure. This provides a new idea for the preparation of anode materials for high-capacity lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document