Electrochemically synthesized liquid-sulfur/sulfide composite materials for high-rate magnesium battery cathodes

Author(s):  
Kohei Shimokawa ◽  
Takuya Furuhashi ◽  
Tomoya Kawaguchi ◽  
Won-Young Park ◽  
Takeshi Wada ◽  
...  

Liquid S/sulfide composite cathodes can be spontaneously synthesized by electrochemically oxidizing sulfides, enabling high-rate magnesium rechargeable batteries.

2022 ◽  
Author(s):  
Tetsuya Tsuda ◽  
Junya Sasaki ◽  
Yuya Uemura ◽  
Toshikatu Kojima ◽  
Hiroshi Senoh ◽  
...  

Promising sulfurized polyethylene glycol (SPEG) composite cathodes with a high-rate capability over 3000 mA g-1 at 393 K are fabricated for Al metal anode rechargeable batteries with a 61.0-26.0-13.0 mol%...


2016 ◽  
Vol 52 (92) ◽  
pp. 13479-13482 ◽  
Author(s):  
Qinyu Li ◽  
Huijun Yang ◽  
Lisheng Xie ◽  
Jun Yang ◽  
Yanna Nuli ◽  
...  

In this work, we investigate a novel aqueous binder which promotes S@pPAN composite cathode materials exhibiting excellent cycling performance and favorable high rate capability.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7299
Author(s):  
Alejandro Pereira ◽  
Alberto Tielas ◽  
Teresa Prado ◽  
Maria Fenollera ◽  
José Antonio Pérez

The new requirements in different sectors, such as aerospace, automotive and construction, for lightweight materials have led to an increase in demand for composite materials suitable for use in high rate production processes, such as plastic injection. This makes it necessary to look for matrices and reinforcements that, in addition to being compatible with each other, are also compatible with the injection process. It is in this area of research where the work presented here arises. To meet the two requirements mentioned above, this study contemplates a battery of composite materials obtained by combining PA66 and fiberglass, in different proportions and configuration, both for the preparation of the matrix and for reinforcement. For the elaboration of the matrix, two options have been evaluated, PA66 and PA66 reinforced at 35% with short glass fibre. To obtain reinforcement, six different options have been evaluated; two conventional fiberglass fabrics (each with different density) and four hybrid fabrics obtained from the previous ones by adding PA66 in different configurations (two over-stitched fabrics and two other fabrics). The different composite materials obtained were validated by means of the corresponding adhesion, peeling and resistance tests.


Author(s):  
Huihuang Huang ◽  
Guangyu Zhao ◽  
Xin Sun ◽  
Xianbo Yu ◽  
Chao Liu ◽  
...  

Mg2+/Li+ hybrid ion battery (MLIB) is regarded as an engaging candidate of next generation rechargeable batteries. However, realizing superior high-rate performance is still an unremitting challenge for further development of...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruijuan Shi ◽  
Luojia Liu ◽  
Yong Lu ◽  
Chenchen Wang ◽  
Yixin Li ◽  
...  

AbstractCovalent organic frameworks with designable periodic skeletons and ordered nanopores have attracted increasing attention as promising cathode materials for rechargeable batteries. However, the reported cathodes are plagued by limited capacity and unsatisfying rate performance. Here we report a honeycomb-like nitrogen-rich covalent organic framework with multiple carbonyls. The sodium storage ability of pyrazines and carbonyls and the up-to twelve sodium-ion redox chemistry mechanism for each repetitive unit have been demonstrated by in/ex-situ Fourier transform infrared spectra and density functional theory calculations. The insoluble electrode exhibits a remarkably high specific capacity of 452.0 mAh g−1, excellent cycling stability (~96% capacity retention after 1000 cycles) and high rate performance (134.3 mAh g−1 at 10.0 A g−1). Furthermore, a pouch-type battery is assembled, displaying the gravimetric and volumetric energy density of 101.1 Wh kg−1cell and 78.5 Wh L−1cell, respectively, indicating potentially practical applications of conjugated polymers in rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document