Control by Mixed-Chloride Additives of the Quality and Homogeneity of Bulk Halide Perovskite upon Film Formation Process

Author(s):  
Thierry Pauporté ◽  
Daming zheng

Nowadays, overcoming the stability issue of perovskite solar cells (PSCs) while keeping high efficiency has become an urgent need for the future of this technology. By using x-ray diffraction (XRD),...

Solar RRL ◽  
2020 ◽  
pp. 2000606
Author(s):  
Muhammad. Abdel-Shakour ◽  
Towhid H. Chowdhury ◽  
Kiyoto Matsuishi ◽  
Idriss Bedja ◽  
Yutaka Moritomo ◽  
...  

2015 ◽  
Vol 3 (30) ◽  
pp. 15372-15385 ◽  
Author(s):  
Yu-Che Hsiao ◽  
Ting Wu ◽  
Mingxing Li ◽  
Qing Liu ◽  
Wei Qin ◽  
...  

Polarization and spin-dependent excited states and charge transport.


2021 ◽  
Author(s):  
Ran Zhao ◽  
Kai Zhang ◽  
Jiahao Zhu ◽  
Shuang Xiao ◽  
Wei Xiong ◽  
...  

Interface passivation is of the pivot to achieve high-efficiency organic metal halide perovskite solar cells (PSCs). Atomic layer deposition (ALD) of wide band gap oxides has recently shown great potential...


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omid Malekan ◽  
Mehdi Adelifard ◽  
Mohamad Mehdi Bagheri Mohagheghi

Purpose In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical properties, and greater than 22% conversion efficiency. However, improvement and future commercialization of solar cells based on CH3NH3PbI3 encountered restrictions due to toxicity and instability of the lead element. Recently, studies on properties of lead-free and mixture of lead with other cations perovskite thin films as light absorber materials have been reported. The purpose of this paper was the fabrication of CH3NH3Sn1-xPbxI3 thin films with different SnI2 concentrations in ambient condition, and study on the structural, morphological, optical, and photovoltaic performance of the studied solar cells. The X-ray diffraction studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases with increasing the Sn concentration, and improvement in crystallinity and morphology was also observed. All perovskite layers had a relatively high absorption coefficient >104 cm−1 in the visible wavelengths, and the bandgap values varied in the range from 1.46 to 1.63 eV. Perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Design/methodology/approach In this work, the author mixed tin and lead with different percentages in the perovskite thin film. Also, the preparation of these layers and also other layers to fabricate solar cells based on them were conducted in an open and non-glove box environment. Finally, the effect of [Sn/Pb] ratio in the CH3NH3Sn1-xPbxI3 layers on the structural, morphological, optical, electrical and photovoltaic performance have been investigated. Findings CH3NH3Sn1-xPbxI3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) perovskite thin films have been grown by a spin-coating technique. It was found that as tin concentration increases, the X-ray diffraction and FESEM images studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases, and improvement in crystallinity, and morphology; all thin films had high absorption coefficient values close to 104 cm−1 in the visible region, and the direct optical bandgap in the layers decreases from 1.63 eV in pure CH3NH3SnI3 to 1.46 eV for CH3NH3Sn0.0.25Pb0.75I3 samples; all thin films had p-type conductivity, and mobility and carrier density increased; perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Originality/value The preparation method seems to be interesting as it is in an ambient environment without the protection of nitrogen or argon gas.


2020 ◽  
Vol 14 (8) ◽  
pp. 2000182 ◽  
Author(s):  
Dakota Schwartz ◽  
Rubaiya Murshed ◽  
Harry Larson ◽  
Benedikt Usprung ◽  
Sina Soltanmohamad ◽  
...  

2014 ◽  
Vol 26 (44) ◽  
pp. 7499-7504 ◽  
Author(s):  
Daniel Bryant ◽  
Peter Greenwood ◽  
Joel Troughton ◽  
Maarten Wijdekop ◽  
Mathew Carnie ◽  
...  

2018 ◽  
Vol 192 ◽  
pp. 01031
Author(s):  
Satoru Seto ◽  
Rintaro Shimizu ◽  
Makoto Tokuda

We report on metal-organic halide perovskite CH3NH3PbI3 films converted from PbI2 precursors for planar heterojunction perovskite solar cells. PbI2 films as a precursor were deposited by hot-wall method and conventional vacuum evaporation. The conversion to perovskite phase from the PbI2 films were performed by annealing in methyl ammonium iodine (MAI) vapour at 120-150 °C. We confirmed that no residual PbI2 phase can be detected in the converted perovskite films by x-ray diffraction measurements. The surface morphology of the perovskite films was measured by AFM. Roughness Ra of the films is 17.8 nm, which is comparable value to the reported ones. Using the converted perovskite films we fabricated tentative perovskite solar cells with a device architecture of ITO/PEDOT:PSS/Perovskite/C60/Ag. The power conversion efficiencies of the fabricated solar cells from a conventional evaporation and the hot-wall method exhibited 2.22 and 2.33%, respectively.


2017 ◽  
Vol 5 (23) ◽  
pp. 11462-11482 ◽  
Author(s):  
Shida Yang ◽  
Weifei Fu ◽  
Zhongqiang Zhang ◽  
Hongzheng Chen ◽  
Chang-Zhi Li

In this review, we first highlighted recent progress in high-performance perovskite solar cells (PVSCs) with a discussion of the fabrication methods and PVSCs-based tandem solar cells. Furthermore, the stability issue of PVSCs and strategies to improve material and device stability have been discussed, and finally, a summary of the recent progress in lead-free perovskites has been presented.


Sign in / Sign up

Export Citation Format

Share Document