The all-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system

Author(s):  
youwei Zhao ◽  
Ningle Hou ◽  
Yifan Wang ◽  
Chaochao Fu ◽  
Xiaoting Li ◽  
...  

Flexible, wearable self-powered pressure sensors have successfully sparked great interest in a variety of potential applications. However, the fabrication of such a sensor system with ultra-long battery life, ultra-high operational...

2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


10.29007/wh2k ◽  
2019 ◽  
Author(s):  
Sukhi Singh ◽  
Timothy Lee ◽  
Joshua Giles

This paper describes the development, functionality, and initial testing of a wearable sensor system and companion smartphone app intended to support the rehabilitation of Achilles injury patients by providing 1) real time biofeedback, which can help patients adhere to rehabilitation restrictions; 2) exercise support to encourage patients to correctly perform all rehabilitation activities; 3) data summaries to clinicians in order to allow appropriate interventions when necessary. The wearable system is composed of insole pressure sensors, a calf muscle activation sensor, and inertial measurement units, whose data are communicated to the smartphone app via a Bluetooth enabled microcontroller. Initial testing demonstrated the quality of the data recorded by the sensors and the ability of those data to be used to identify functional activities like walking and stairclimbing.


Author(s):  
Hao Lei ◽  
Yunfeng Chen ◽  
Zhenqiu Gao ◽  
Zhen Wen ◽  
Xuhui Sun

Pressure sensors have attracted much attention for their potential applications in health monitoring, wearable devices, electronic skin and smart robots, etc. With the rapid development of Internet of Things, considering...


Nano Energy ◽  
2020 ◽  
Vol 72 ◽  
pp. 104742 ◽  
Author(s):  
Yujia Zhong ◽  
Li Zhang ◽  
Vincent Linseis ◽  
Bingchao Qin ◽  
Wenduo Chen ◽  
...  

Author(s):  
Muhammad Yar Khan ◽  
Yan Liu ◽  
Tao Wang ◽  
Hu Long ◽  
Miaogen Chen ◽  
...  

AbstractMonolayer MnCX3 metal–carbon trichalcogenides have been investigated by using the first-principle calculations. The compounds show half-metallic ferromagnetic characters. Our results reveal that their electronic and magnetic properties can be altered by applying uniaxial or biaxial strain. By tuning the strength of the external strain, the electronic bandgap and magnetic ordering of the compounds change and result in a phase transition from the half-metallic to the semiconducting phase. Furthermore, the vibrational and thermodynamic stability of the two-dimensional structure has been verified by calculating the phonon dispersion and molecular dynamics. Our study paves guidance for the potential applications of these two mono-layers in the future for spintronics and straintronics devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


2021 ◽  
pp. 2100564
Author(s):  
Ying‐Chiao Wang ◽  
Chun‐Hao Chiang ◽  
Chi‐Ming Chang ◽  
Hiroaki Maeda ◽  
Naoya Fukui ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 234 ◽  
Author(s):  
Urooj Kamran ◽  
Young-Jung Heo ◽  
Ji Won Lee ◽  
Soo-Jin Park

Carbon-based materials, including graphene, single walled carbon nanotubes (SWCNTs), and multi walled carbon nanotubes (MWCNTs), are very promising materials for developing future-generation electronic devices. Their efficient physical, chemical, and electrical properties, such as high conductivity, efficient thermal and electrochemical stability, and high specific surface area, enable them to fulfill the requirements of modern electronic industries. In this review article, we discuss the synthetic methods of different functionalized carbon materials based on graphene oxide (GO), SWCNTs, MWCNTs, carbon fibers (CFs), and activated carbon (AC). Furthermore, we highlight the recent developments and applications of functionalized carbon materials in energy storage devices (supercapacitors), inkjet printing appliances, self-powered automatic sensing devices (biosensors, gas sensors, pressure sensors), and stretchable/flexible wearable electronic devices.


Sign in / Sign up

Export Citation Format

Share Document