Advances in Self-Powered Triboelectric Pressure Sensors

Author(s):  
Hao Lei ◽  
Yunfeng Chen ◽  
Zhenqiu Gao ◽  
Zhen Wen ◽  
Xuhui Sun

Pressure sensors have attracted much attention for their potential applications in health monitoring, wearable devices, electronic skin and smart robots, etc. With the rapid development of Internet of Things, considering...

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4407 ◽  
Author(s):  
Andreia dos Santos ◽  
Elvira Fortunato ◽  
Rodrigo Martins ◽  
Hugo Águas ◽  
Rui Igreja

Electronic skin (e-skin), which is an electronic surrogate of human skin, aims to recreate the multifunctionality of skin by using sensing units to detect multiple stimuli, while keeping key features of skin such as low thickness, stretchability, flexibility, and conformability. One of the most important stimuli to be detected is pressure due to its relevance in a plethora of applications, from health monitoring to functional prosthesis, robotics, and human-machine-interfaces (HMI). The performance of these e-skin pressure sensors is tailored, typically through micro-structuring techniques (such as photolithography, unconventional molds, incorporation of naturally micro-structured materials, laser engraving, amongst others) to achieve high sensitivities (commonly above 1 kPa−1), which is mostly relevant for health monitoring applications, or to extend the linearity of the behavior over a larger pressure range (from few Pa to 100 kPa), an important feature for functional prosthesis. Hence, this review intends to give a generalized view over the most relevant highlights in the development and micro-structuring of e-skin pressure sensors, while contributing to update the field with the most recent research. A special emphasis is devoted to the most employed pressure transduction mechanisms, namely capacitance, piezoelectricity, piezoresistivity, and triboelectricity, as well as to materials and novel techniques more recently explored to innovate the field and bring it a step closer to general adoption by society.


Author(s):  
Ajay Singh ◽  
Vincent Koomson ◽  
Jaewook Yu ◽  
Goldie Nejat

The objective of our work is to develop a novel self-powered multi-modal wireless health monitoring sensory system architecture consisting of: (i) wearable devices to continuously monitor the vital signs of a person, and (ii) environmental sensory devices which can monitor the environment and also act as multi-hop routers providing data paths from the wearable devices to a main processing unit. Together these devices can provide effective remote health monitoring of a person and also inform the person of important information. In this paper, we address the significant issue of energy depletion for the devices, which can lead to critical interruptions in monitoring, by proposing a flexible unique vibration-based energy harvesting scheme to support our architecture. This active energy harvesting scheme will allow for continuous remote monitoring of the person and his/her environment in various situations. Experimental results demonstrate the potential utilization of electromagnetic and piezoelectric vibration-based harvesting techniques for the proposed application.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6306
Author(s):  
Yanan Shen ◽  
Chunyang Wang ◽  
Xiao Yang ◽  
Jian Li ◽  
Rui Lu ◽  
...  

With the rapid development of wearable electronics, looking for flexible and wearable generators as their self-power systems has proved an extensive task. Fiber-based thermoelectric generators (FTEGs) are promising candidates for these self-powered systems that collect energy from the surrounding environment or human body to sustain wearable electronics. In this work, we overview performances and device structures of state-of-the-art fiber-based thermoelectric materials, including inorganic fibers (e.g., carbon fibers, oxide fibers, and semiconductor fibers), organic fibers, and hybrid fibers. Moreover, potential applications for related thermoelectric devices are discussed, and future developments in fiber-based thermoelectric materials are also briefly expected.


Author(s):  
Hongxin Hong ◽  
Xiya Yang ◽  
Hui Cui ◽  
Duo Zheng ◽  
Haiyang Wen ◽  
...  

The rapid development of Internet of Things brings increasing attention on the harvesting of distributed sustainable energy. Recently, study on triboelectric nanogenerators (TENG) in collecting low-frequency and irregular amplitude ocean...


Author(s):  
Saeed Ahmed Khan ◽  
Shamsuddin Lakho ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Izhar Hussain Memon ◽  
...  

Most of the emerging electronic devices are wearable in nature. However, the frequent changing or charging the battery of all wearable devices is the big challenge. Interestingly, with those wearable devices that are directly associated with the human body, the body can be used in transferring or generating energy in a number of techniques. One technique is triboelectric nanogenerators (TENG). This chapter covers different applications where the human body is used as a triboelectric layer and as a sensor. Wearable TENG has been discussed in detail based on four basic modes that could be used to monitor the human health. In all the discussions, the main focus is to power the wearable healthcare internet of things (IoT) sensor through human body motion based on self-powered TENG. The IoT sensors-based wearable devices related to human body can be used to develop smart body temperature sensors, pressure sensors, smart textiles, and fitness tracking sensors.


Author(s):  
Haizhen Wang ◽  
Zhen Li ◽  
Zeyi Liu ◽  
Tianyou Shan ◽  
Jikun Fu ◽  
...  

Flexible pressure sensors have attracted more and more attention recently due to their broad applications, such as electronic skin and wearable electronics for health monitoring. Among them, capacitive flexible pressure...


Author(s):  
youwei Zhao ◽  
Ningle Hou ◽  
Yifan Wang ◽  
Chaochao Fu ◽  
Xiaoting Li ◽  
...  

Flexible, wearable self-powered pressure sensors have successfully sparked great interest in a variety of potential applications. However, the fabrication of such a sensor system with ultra-long battery life, ultra-high operational...


2018 ◽  
Vol 211 ◽  
pp. 21004 ◽  
Author(s):  
Cristobal Garcia ◽  
Irina Trendafilova

Impacts and collisions are frequent in aircrafts, wind turbines, bridges and other composites structures. Some examples are the collisions between birds and aircrafts during take-off and landing or the damages caused in wind turbines due to the impact of hailstones. Hence, the detection and measurement of these impacts is the vital importance for monitoring the health state of composites structures as aircrafts or wind turbines. The main purpose of the paper is to demonstrate the sensitivity of a novel triboelectric sensor for impact detection in composite structures as aircrafts. For this study, composite plates adhered with the fabricated triboelectric sensor are subjected to various impact velocities using a dropweight machine. The sensor electrical responses due to the impacts are measured with the aim to evaluate the sensitivity of the developed triboelectric sensor to variations in the impact velocities. The results show that the sensor electric responses increase linearly with impact velocity in the range between 1.3 and 2.4 m/s. This paper is the first attempt to demonstrate the potential applications of triboelectric sensors to measure the velocity of the impacts in composite structures, which play an important role for structural health monitoring in aircrafts, bridges and other composite structures.


2021 ◽  
Author(s):  
Liangliang Liu ◽  
Xin Yan

Abstract In recent years, capacitive flexible pressure sensors have been widely studied in electronic skin and wearable devices. The traditional capacitive pressure sensor has a higher production cost due to micro-nano machining technology such as lithography. This paper presents a flexible transparent capacitive pressure sensor based on a PDMS/CNT composite electrode, simple, transparent, flexible, and arrays without lithography. The sensitivity of the device has been tested to 0.0018 kpa -1 with a detection range of 0-30 kPa. The sensor is capable of rapidly detecting different pressures and remains stable after 100 load-unload tests.


Sign in / Sign up

Export Citation Format

Share Document