Strategies for Designing More Efficient Electrocatalysts towards Urea Oxidation Reaction

Author(s):  
Dongdong Zhu ◽  
Huaiyu Zhang ◽  
Juhong Miao ◽  
Fang Xin Hu ◽  
Liang Wang ◽  
...  

Urea oxidation reaction (UOR) is a pivotal half-reaction for urea-assisted water splitting to produce hydrogen, direct urea fuel cells and electrochemical degradation of urea-containing wastewater. However, the intrinsic sluggish kinetics...

2019 ◽  
Vol 7 (42) ◽  
pp. 24437-24444 ◽  
Author(s):  
Weiwei Liu ◽  
Junfeng Xie ◽  
Yanqing Guo ◽  
Shanshan Lou ◽  
Li Gao ◽  
...  

The electrocatalytic hydrazine oxidation reaction (HzOR) has drawn extensive attention due to its high energy conversion efficiency and wide applications in hydrazine-assisted water splitting and direct hydrazine fuel cells (DHFC).


2020 ◽  
Vol 16 ◽  
Author(s):  
Chanchan Fan ◽  
Peng Zhang ◽  
Ranran Wang ◽  
Yezhu Xu ◽  
Xingrui Sun ◽  
...  

: A new kind of two-dimensional (2D) materials MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefits to the ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene have already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide more brief idea for MXene used as new energy materials.


2021 ◽  
Vol 362 ◽  
pp. 115565
Author(s):  
R.A. Budiman ◽  
T. Ishiyama ◽  
K.D. Bagarinao ◽  
H. Kishimoto ◽  
K. Yamaji ◽  
...  

2021 ◽  
Author(s):  
Yuhou Pei ◽  
Jiong Cheng ◽  
Heng Zhong ◽  
Zhenfeng Pi ◽  
Zhao Yu ◽  
...  

Replacing the sluggish oxygen evolution reaction (OER) by sulfide electro-oxidation reaction (SOR) could be a promising way to decrease the energy consumption for hydrogen evolution reaction (HER) and to treat...


2021 ◽  
Author(s):  
Guangjin Zhang ◽  
Victor Charles ◽  
Yong Yang ◽  
Menglei Yuan ◽  
Jitao Zhang ◽  
...  

Water oxidation reaction involves a four electron-proton coupled process that is kinetically sluggish and has hindered the widespread application of water-splitting technology. Metal-MOF-coupled heterostructures serve as good OER electrocatalysts due...


Nanoscale ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 4719-4728 ◽  
Author(s):  
Yunshan Zheng ◽  
Yan Zhai ◽  
Maomao Tu ◽  
Xinhua Huang ◽  
Mingcong Shu ◽  
...  

The design and fabrication of economically viable anode catalysts for the methanol oxidation reaction (MOR) have been challenging issues in direct methanol fuel cells (DMFCs) over the decades.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 458
Author(s):  
Tse-Wei Chen ◽  
Ganesan Anushya ◽  
Shen-Ming Chen ◽  
Palraj Kalimuthu ◽  
Vinitha Mariyappan ◽  
...  

Metal-air batteries and fuel cells are considered the most promising highly efficient energy storage systems because they possess long life cycles, high carbon monoxide (CO) tolerance, and low fuel crossover ability. The use of energy storage technology in the transport segment holds great promise for producing green and clean energy with lesser greenhouse gas (GHG) emissions. In recent years, nanoscale based electrocatalysts have shown remarkable electrocatalytic performance towards the construction of sustainable energy-related devices/applications, including fuel cells, metal-air battery and water-splitting processes. This review summarises the recent advancement in the development of nanoscale-based electrocatalysts and their energy-related electrocatalytic applications. Further, we focus on different synthetic approaches employed to fabricate the nanomaterial catalysts and also their size, shape and morphological related electrocatalytic performances. Following this, we discuss the catalytic reaction mechanism of the electrochemical energy generation process, which provides close insight to develop a more efficient catalyst. Moreover, we outline the future perspectives and challenges pertaining to the development of highly efficient nanoscale-based electrocatalysts for green energy storage technology.


Sign in / Sign up

Export Citation Format

Share Document