Growth of mineralized collagen films by oriented calcium fluoride nanocrystals assembly with enhanced cell proliferation

Author(s):  
Weijian Fang ◽  
Hang Ping ◽  
Ying Huang ◽  
Hao Xie ◽  
Hao Wang ◽  
...  

Bone is a highly calcified tissue with 60 wt% inorganic components. It is made up of mineralized collagen fibrils, where the platelet-like hydroxyapatite nanocrystals orientally deposit within collagen fibrils. Inspired...

Nanoscale ◽  
2021 ◽  
Author(s):  
Weijian Fang ◽  
Hang Ping ◽  
Wolfgang Wagermaier ◽  
Shenbao Jin ◽  
Shahrouz Amini ◽  
...  

Collagen fibrils present periodic structures, which provide space for intrafibrillar growth of oriented hydroxyapatite nanocrystals in bone and contribute to the good mechanical properties of bone. However, there are not...


2021 ◽  
Author(s):  
Mario Milazzo ◽  
Alessio David ◽  
Gang Seob Jung ◽  
Serena Danti ◽  
Markus J. Buehler

Bone is mineralized tissue constituting the skeletal system, supporting and protecting body organs and tissues. In addition to such fundamental mechanical functions, bone also plays a remarkable role in sound...


2003 ◽  
Vol 774 ◽  
Author(s):  
Matthew J. Olszta ◽  
Elliot P. Douglas ◽  
Laurie B. Gower

AbstractIntrafibrillar mineralization of type-I collagen with hydroxyapatite (HA) is the basis of the complex biological composite known as bone, which from a material science perspective is a fascinating example of an interpenetrating bioceramic composite. Using a polymer-induced liquid-precursor (PILP) process, collagen substrates were highly infiltrated with a liquid-phase mineral precursor to calcium carbonate (CaCO3). At sections of partially mineralized collagen, banded mineral patterns were observed perpendicular to the collagen fibrils, while other fibrils were completely mineralized. An acid etch, used to preferentially remove superficial mineral, further revealed such banded patterns in fully mineralized samples. Removal of the collagen matrix with a dilute hypochlorite solution showed an interpenetrating mineral phase, with mineral disks that spanned the diameter of the pre-existing collagen fibrils, supporting our hypothesis that intrafibrillar mineralization can be achieved via capillary action applied to a liquid-phase mineral precursor.


2019 ◽  
Vol 34 (4-5) ◽  
pp. 373-385
Author(s):  
Kuan Wei Lee ◽  
Tang-Ching Kuan ◽  
Ming Wei Lee ◽  
Chen Show Yang ◽  
Lain-Chyr Hwang ◽  
...  

Extracellular matrix has an important part of the role in tissue engineering and regenerative medicine, so it is necessary to understand the various interactions between cells and extracellular matrix. Type II collagen and hyaluronic acid are the major structural components of the extracellular matrix of articular cartilage, and they are involved in fibril formation, entanglement and binding. The aim of this study was to prepare type II collagen fibrils with surface grafted with hyaluronic acid modified at the reducing end. The topographic pattern of type II collagen fibrils showed a significant change after the surface coupling of hyaluronic acid according to atomic force microscopy scanning. The presence of hyaluronic acid on the type II collagen fibrillar surface was confirmed by the specific binding of nanogold labelled with lectin. No significant increase in cell proliferation was detected by a WST-1 assay. According to histochemical examination, the maintenance of the round shape of chondrocytes and increased glycosaminoglycan secretion revealed that these cell pellets with Col II- g-hyaluronic acid molecules contained un-dedifferentiated chondrocytes in vitro. In the mixture with the 220-kDa Col II- g-hyaluronic acid copolymer, the expression of type II collagen and aggrecan genes in chondrocytes increased as demonstrated by real-time polymerase chain reaction analysis. Experimental results show that the amount of hyaluronic acid added during culturing of chondrocytes can maintain the functionality of chondrocytes and thus allow for increased cell proliferation that is suitable for tissue repair of human cartilage.


2008 ◽  
Vol 41 (7) ◽  
pp. 1427-1435 ◽  
Author(s):  
Thomas Siegmund ◽  
Matthew R. Allen ◽  
David B. Burr

ACS Nano ◽  
2020 ◽  
Vol 14 (7) ◽  
pp. 8307-8316
Author(s):  
Mario Milazzo ◽  
Gang Seob Jung ◽  
Serena Danti ◽  
Markus J. Buehler

2008 ◽  
Vol 162 (3) ◽  
pp. 404-410 ◽  
Author(s):  
M. Balooch ◽  
S. Habelitz ◽  
J.H. Kinney ◽  
S.J. Marshall ◽  
G.W. Marshall

1990 ◽  
Vol 95 (1) ◽  
pp. 85-95
Author(s):  
O. Perche ◽  
M. Hayashi ◽  
K. Hayashi ◽  
D. Birk ◽  
R.L. Trelstad ◽  
...  

Bird oviduct development is controlled by sex steroid hormones. Estrogens (E) induce cell proliferation, formation of tubular glands by epithelial cell evagination and cell differentiation. Progesterone (P) strongly increases secretory processes in E-treated quails, but inhibits cell proliferation and cell evagination. The balance between E and P is very critical for the development and morphogenesis of the oviduct. After six daily injections of low doses of E (10 micrograms day-1) and high doses of P (5 mg day-1) into ovariectomized quails, cell proliferation and secretory process are stimulated but cell evagination is totally inhibited and distribution of striated collagen is perturbed. Using antibodies against type I collagen the stroma, which is mainly composed of fibroblasts, is brightly stained, as are some regions within the epithelium. Electron microscopy shows that bundles of striated collagen fibrils appear in extracellular spaces between the lateral membranes of the epithelial cells or between the basal lamina and the epithelial basal membrane. After in situ hybridization using a 35S riboprobe specific for mRNA of the alpha 2 chain of type I collagen, mRNA was detected only in the fibroblasts of the stroma and not in epithelial cells. Furthermore electron microscope studies of collagen bundles in serial sections clearly show collagen fibrils passing through the basal lamina. It is assumed that the type I collagen between epithelial cells originates from mesenchymal cells. In the oviduct of immature birds or after physiological E + P stimulation, striated collagen is localized only in the stroma and never within the epithelium. These results indicate a modulation of extracellular matrix by sex steroid hormones in the quail oviduct.


Sign in / Sign up

Export Citation Format

Share Document